
Recovery

Chapter 6.3
V3.1
Copyright @ Napier University
Dr Gordon Russell



Recovery

A database might be left in an inconsistent state when:
• deadlock has occurred.
• a transaction aborts after updating the database.
• software or hardware errors occur.
• incorrect updates have been applied to the database.

If the database is in an inconsistent state, it is necessary to 
recover to a consistent state. The basis of recovery is to have 
backups of the data in the database.



Recovery: the dump

The simplest backup technique is ‘the Dump’.
• entire contents of the database are backed up to an auxiliary 

store.
• must be performed when the state of the database is 

consistent - therefore no transactions which modify the 
database can be running

• dumping can take a long time to perform
• you need to store the data in the database twice.
• as dumping is expensive, it probably cannot be performed as 

often as one would like.
• a cut-down version can be used to take ‘snapshots’ of the 

most volatile areas.



Recovery: the transaction log

A technique often used to perform recovery is the transaction 
log or journal.

records information about the progress of transactions in a 
log since the last consistent state.
the database therefore knows the state of the database 
before and after each transaction.
every so often the database is returned to a consistent state 
and the log may be truncated to remove committed 
transactions.
when the database is returned to a consistent state the 
process is often referred to as ‘checkpointing’.



Deferred Update

Deferred update, or NO-UNDO/REDO, is an algorithm to 
support ABORT and machine failure scenarios.

While a transaction runs, no changes made by that 
transaction are recorded in the database.
On a commit:

1. The new data is recorded in a log file and flushed to 
disk

2. The new data is then recorded in the database itself.
On an abort, do nothing (the database has not been 
changed).
On a system restart after a failure, REDO the log.



Example

Consider the following transaction T1

Transaction T1
read(A)
write(10,B)
write(20,C)
commit



Example cont…

Using deferred update, the process is:

COMMITCOMMITt5
C => 20write(20,c)t4
B => 10write(10,b)t3
-read(a)t2
-STARTt1
LogActionTime

C=2A=5
B=6

C=20A=5
B=10

Before After

Disk



Example cont...

If the DMBS fails and is restarted:
1. The disks are physically or logically damaged then 

recovery from the log is impossible and instead a 
restore from a dump is needed.

2. If the disks are OK then the database consistency 
must be maintained. Writes to the disk which were 
in progress at the time of the failure may have only 
been partially done.



Example cont...

3. Parse the log file, and where a transaction has been ended 
with ‘COMMIT’ apply the data part of the log to the 
database.

4. If a log entry for a transaction ends with anything other than 
COMMIT, do nothing for that transaction.

5. flush the data to the disk, and then truncate the log to zero.
6. the process or reapplying transaction from the log is 

sometimes referred to as ‘rollforward’.



Immediate Update

Immediate update, or UNDO/REDO, is another algorithm to 
support ABORT and machine failure scenarios.

While a transaction runs, changes made by that transaction 
can be written to the database at any time. However, the 
original and the new data being written must both be stored 
in the log BEFORE storing it on the database disk.
On a commit:

1.All the updates which have not yet been recorded on the 
disk are first stored in the log file and then flushed to 
disk.

2.The new data is then recorded in the database itself.



On an abort, UNDO all the changes which that 
transaction has made to the database disk using 
the log entries.
On a system restart after a failure, REDO 
committed changes from log.



Example cont…

Using immediate update, and transaction T1 again, the process 
is:

COMMIT
Was C == 2, Now 20
Was B == 6, Now 10
-
-
LOG

COMMITt5
write(20,c)t4
write(10,b)t3
read(a)t2
STARTt1
ActionTime

C=2A=5
B=6

C=2A=5
B=10

Before After
Disk

C=20A=5
B=10

During



Immediate Update Example cont...

If the DMBS fails and is restarted:
1. The disks are physically or logically damaged then 

recovery from the log is impossible and instead a 
restore from a dump is needed.

2. If the disks are OK then the database consistency 
must be maintained. Writes to the disk which were 
in progress at the time of the failure may only have 
been partially done.



3. Parse the log file, and where a transaction has 
been ended with ‘COMMIT’ apply the ‘new data’
part of the log to the database.

4. If a log entry for a transaction ends with anything 
other than COMMIT, apply the ‘old data’ part of 
the log to the database.

5. flush the data to the disk, and then truncate the 
log to zero.



Rollback

The process of undoing changes done to the disk under 
immediate update is frequently referred to as rollback.

Where the DBMS does not prevent one transaction from 
reading uncommitted modifications (a ‘dirty read’) of 
another transaction (i.e. the uncommitted dependency 
problem) then aborting the first transaction also means 
aborting all the transactions which have performed these 
dirty reads.
as a transaction is aborted, it can therefore cause aborts in 
other dirty reader transactions, which in turn can cause 
other aborts in other dirty reader transaction. This is 
referred to as ‘cascade rollback’.


