
NAPIER UNIVERSITY

EDINBURGH

Database Systems

Student Notes

CO22001/CO72010

Version 3.2

SCHOOL OF COMPUTING

Page 1 of 181Database System Notes V3.2

31/08/2005

Database eLearning
This site is focused on online database learning, revolving around an electronic textbook. Chapter
links to the textbook are as follows:

Introduction
Database Analysis and ER Modelling
SQL
Normalisation
Relational Algebra
Concurrency, Transactions, and Implementations
Programming with SQL
Metadata, Security, and the DBA
Offline Tutorials
Appendix

Other Sites: Linux Admin Tutorials

Page 2 of 181Database System Notes V3.2

31/08/2005

Chapter 1 - Introduction
So you want to learn about databases? This document is a good starting point, and is used at
University level to teach computing students. Use it in conjunction with the online resources, like the
quiz and the SQL tutorial environment.

This Document
Introduction

Page 3 of 181Database System Notes V3.2

31/08/2005

This Document
Welcome to Database Resources. I have been authoring online material to teach databases for many
years, and this site is the latest attempt to bring online database learning to the public.

The site revolves around this electronic document, which contains all the theory required to pass a
introduction to databases module at University level. The site also has practical exercises, including
an online quiz for testing your knowledge, actual University exam papers for you to formally test
yourself and gain exam experience, and an online SQL environment for executing your own SQL
from the safety of your own home.

For reference, the version of the notes you see on this site are based on v3.1 of the printed notes.

The SQL environment gives you access to an Oracle database, and allows you to write your own
SQL and execute it as part of an extensive practical exercise. Free registration allows you to revisit
the tutorials and continue on from where you left off.

There are additional resources for those involved in teaching databases, including a downloadable
version of the notes and powerpoint slides for formal lectures.

Usage
This document is for use with a variety of University courses running throughout the world. The
document forms a good introduction to the basics of database systems for university students. At
Napier University the modules which use this material include:

CO22001 – Database Systems. This is a 2nd year module for computing students.

CS22010 – Database Systems 2. This is the old name for CO22001.
CO72010 – Database Systems. This is a postgraduate module taught on some of our
postgraduate conversion courses.

You are free to make use of this site for personal learning purposes only. To make use of the material
found here for financial gain you must gain written permission from myself. Suggestions and
corrections welcomed.

Dr Gordon Russell (g.russell@napier.ac.uk)

Acknowledgments:

Andrew Cumming
John Old

Page 4 of 181Database System Notes V3.2

31/08/2005

Introduction
Contents

The Database Approach
User Types
Database Architecture

Three level database architecture
External View
Conceptual View
Internal View
Mappings

DBMS
Database Administrator
Facilities and Limitations

Data Independence
Data Redundancy
Data Integrity

Relational database systems have become increasingly popular since the late 1970's. They offer a
powerful method for storing data in an application-independent manner. This means that for many
enterprises the database is at the core of the I.T. strategy. Developments can progress around a
relatively stable database structure which is secure, reliable, efficient, and transparent.

In early systems, each suite of application programs had its own independent master file. The
duplication of data over master files could lead to inconsistent data.

Efforts to use a common master file for a number of application programs resulted in problems of
integrity and security. The production of new application programs could require amendments to
existing application programs, resulting in `unproductive maintenance'.

Data structuring techniques, developed to exploit random access storage devices, increased the
complexity of the insert, delete and update operations on data. As a first step towards a DBMS,
packages of subroutines were introduced to reduce programmer effort in maintaining these data
structures. However, the use of these packages still requires knowledge of the physical organization
of the data.

The Database Approach
A database system is a computer-based system to record and maintain information. The information
concerned can be anything of significance to the organisation for whose use it is intended.

The contents of a database can hold a variety of different things. To make database design more
straight-forward, databases contents are divided up into two concepts:

Schema
Data

The Schema is the structure of data, whereas the Data are the "facts". Schema can be complex to
understand to begin with, but really indicates the rules which the Data must obey.

Page 5 of 181Database System Notes V3.2

31/08/2005

Imagine a case where we want to store facts about employees in a company. Such facts could include
their name, address, date of birth, and salary. In a database all the information on all employees
would be held in a single storage "container", called a table. This table is a tabular object like a
spreadsheet page, with different employees as the rows, and the facts (e.g. their names) as columns...
Let's call this table EMP, and it could look something like:

From this information the schema would define that EMP has four components,
"NAME","ADDRESS","DOB","SALARY". As designers we can call the columns what we like, but
making them meaningful helps. In addition to the name, we want to try and make sure that people
dont accidentally store a name in the DOB column, or some other silly error. Protecting the database
against rubbish data is one of the most important database design steps, and is what much of this
course is about. From what we know about the facts, we can say things like:

NAME is a string, and needs to hold at least 12 characters.
ADDRESS is a string, and needs to hold at least 12 characters.
DOB is a date... The company forbids people over 100 years old or younger than 18 years old
working for them.
SALARY is a number. It must be greater than zero.

Such rules can be enforced by a database. During the design phase of a database schema these and
more complex rules are identified and where possible implemented. The more rules the harder it is to
enter poor quality data.

User Types
When considering users of a Database system, there are three broad classes to consider:

1. the application programmer, responsible for writing programs in some high-level language
such as COBOL, C++, etc.

2. the end-user, who accesses the database via a query language
3. the database administrator (DBA), who controls all operations on the database

Database Architecture
DBMSs do not all conform to the same architecture.

The three-level architecture forms the basis of modern database architectures.
this is in agreement with the ANSI/SPARC study group on Database Management Systems.
ANSI/SPARC is the American National Standards Institute/Standard Planning and
Requirement Committee).
The architecture for DBMSs is divided into three general levels:
external
conceptual
internal

Three level database architecture

Name Address Date of Birth Salary
Jim Smith 1 Apple Lane 1/3/1991 11000
Jon Greg 5 Pear St 7/9/1992 13000
Bob Roberts 2 Plumb Road 3/2/1990 12000

Page 6 of 181Database System Notes V3.2

31/08/2005

Figure 1: Three level architecture

1. the external level : concerned with the way individual users see the data
2. the conceptual level : can be regarded as a community user view a formal description of data

of interest to the organisation, independent of any storage considerations.
3. the internal level : concerned with the way in which the data is actually stored

Figure : How the three level architecture works

External View

A user is anyone who needs to access some portion of the data. They may range from application
programmers to casual users with adhoc queries. Each user has a language at his/her disposal.

The application programmer may use a high level language (e.g. COBOL) while the casual user will
probably use a query language.

Regardless of the language used, it will include a data sublanguage DSL which is that subset of the
language which is concerned with storage and retrieval of information in the database and may or

Page 7 of 181Database System Notes V3.2

31/08/2005

may not be apparent to the user.

A DSL is a combination of two languages:

a data definition language (DDL) - provides for the definition or description of database
objects
a data manipulation language (DML) - supports the manipulation or processing of database
objects.

Each user sees the data in terms of an external view: Defined by an external schema, consisting
basically of descriptions of each of the various types of external record in that external view, and
also a definition of the mapping between the external schema and the underlying conceptual schema.

Conceptual View

An abstract representation of the entire information content of the database.
It is in general a view of the data as it actually is, that is, it is a `model' of the `realworld'.
It consists of multiple occurrences of multiple types of conceptual record, defined in the
conceptual schema.
To achieve data independence, the definitions of conceptual records must involve information
content only.
storage structure is ignored
access strategy is ignored
In addition to definitions, the conceptual schema contains authorisation and validation
procedures.

Internal View

The internal view is a low-level representation of the entire database consisting of multiple
occurrences of multiple types of internal (stored) records.

It is however at one remove from the physical level since it does not deal in terms of physical
records or blocks nor with any device specific constraints such as cylinder or track sizes. Details of
mapping to physical storage is highly implementation specific and are not expressed in the three-
level architecture.

The internal view described by the internal schema:

defines the various types of stored record
what indices exist
how stored fields are represented
what physical sequence the stored records are in

In effect the internal schema is the storage structure definition.

Mappings

The conceptual/internal mapping:
defines conceptual and internal view correspondence
specifies mapping from conceptual records to their stored counterparts

An external/conceptual mapping:
defines a particular external and conceptual view correspondence

A change to the storage structure definition means that the conceptual/internal mapping must

Page 8 of 181Database System Notes V3.2

31/08/2005

be changed accordingly, so that the conceptual schema may remain invariant, achieving
physical data independence.
A change to the conceptual definition means that the conceptual/external mapping must be
changed accordingly, so that the external schema may remain invariant, achieving logical data
independence.

DBMS
The database management system (DBMS) is the software that:

handles all access to the database
is responsible for applying the authorisation checks and validation procedures

Conceptually what happens is:

1. A user issues an access request, using some particular DML.
2. The DBMS intercepts the request and interprets it.
3. The DBMS inspects in turn the external schema, the external/conceptual mapping, the

conceptual schema, the conceptual internal mapping, and the storage structure definition.
4. The DBMS performs the necessary operations on the stored database.

Database Administrator
The database administrator (DBA) is the person (or group of people) responsible for overall control
of the database system. The DBA's responsibilities include the following:

deciding the information content of the database, i.e. identifying the entities of interest to the
enterprise and the information to be recorded about those entities. This is defined by writing
the conceptual schema using the DDL
deciding the storage structure and access strategy, i.e. how the data is to be represented by
writing the storage structure definition. The associated internal/conceptual schema must also
be specified using the DDL
liaising with users, i.e. to ensure that the data they require is available and to write the
necessary external schemas and conceptual/external mapping (again using DDL)
defining authorisation checks and validation procedures. Authorisation checks and validation
procedures are extensions to the conceptual schema and can be specified using the DDL
defining a strategy for backup and recovery. For example periodic dumping of the database to
a backup tape and procedures for reloading the database for backup. Use of a log file where
each log record contains the values for database items before and after a change and can be
used for recovery purposes
monitoring performance and responding to changes in requirements, i.e. changing details of
storage and access thereby organising the system so as to get the performance that is `best for
the enterprise'

Facilities and Limitations
The facilities offered by DBMS vary a great deal, depending on their level of sophistication. In
general, however, a good DBMS should provide the following advantages over a conventional
system:

Independence of data and program - This is a prime advantage of a database. Both the
database and the user program can be altered independently of each other thus saving time and

Page 9 of 181Database System Notes V3.2

31/08/2005

money which would be required to retain consistency.
Data shareability and nonredundance of data - The ideal situation is to enable applications to
share an integrated database containing all the data needed by the applications and thus
eliminate as much as possible the need to store data redundantly.
Integrity - With many different users sharing various portions of the database, it is impossible
for each user to be responsible for the consistency of the values in the database and for
maintaining the relationships of the user data items to all other data item, some of which may
be unknown or even prohibited for the user to access.
Centralised control - With central control of the database, the DBA can ensure that standards
are followed in the representation of data.
Security - Having control over the database the DBA can ensure that access to the database is
through proper channels and can define the access rights of any user to any data items or
defined subset of the database. The security system must prevent corruption of the existing
data either accidently or maliciously.
Performance and Efficiency - In view of the size of databases and of demanding database
accessing requirements, good performance and efficiency are major requirements. Knowing
the overall requirements of the organisation, as opposed to the requirements of any individual
user, the DBA can structure the database system to provide an overall service that is `best for
the enterprise'.

Data Independence

This is a prime advantage of a database. Both the database and the user program can be altered
independently of each other.
In a conventional system applications are datadependent. This means that the way in which the
data is organised in secondary storage and the way in which it is accessed are both dictated by
the requirements of the application, and, moreover, that knowledge of the data organisation
and access technique is built into the application logic.
For example, if a file is stored in indexed sequential form then an application must know

that the index exists
the file sequence (as defined by the index)

The internal structure of the application will be built around this knowledge. If, for example, the file
was to be replaced by a hash-addressed file, major modifications would have to be made to the
application.

Such an application is data-dependent - it is impossible to change the storage structure (how the data
is physically recorded) or the access strategy (how it is accessed) without affecting the application,
probably drastically. The portions of the application requiring alteration are those that communicate
with the file handling software - the difficulties involved are quite irrelevant to the problem the
application was written to solve.

it is undesirable to allow applications to be data-dependent - different applications will need
different views of the same data.
the DBA must have the freedom to change storage structure or access strategy in response to
changing requirements without having to modify existing applications.
Data independence can be defines as
`The immunity of applications to change in storage structure and access strategy'.

Data Redundancy

In non-database systems each application has its own private files. This can often lead to redundancy
in stored data, with resultant waste in storage space. In a database the data is integrated.

Page 10 of 181Database System Notes V3.2

31/08/2005

The database may be thought of as a unification of several otherwise distinct data files, with any
redundancy among those files partially or wholly eliminated.

Data integration is generally regarded as an important characteristic of a database. The avoidance of
redundancy should be an aim, however, the vigour with which this aim should be pursued is open to
question.

Redundancy is

direct if a value is a copy of another
indirect if the value can be derived from other values:

simplifies retrieval but complicates update
conversely integration makes retrieval slow and updates easier

Data redundancy can lead to inconsistency in the database unless controlled.
the system should be aware of any data duplication - the system is responsible for ensuring
updates are carried out correctly.
a DB with uncontrolled redundancy can be in an inconsistent state - it can supply incorrect or
conflicting information
a given fact represented by a single entry cannot result in inconsistency - few systems are
capable of propagating updates i.e. most systems do not support controlled redundancy.

Data Integrity

This describes the problem of ensuring that the data in the database is accurate...

inconsistencies between two entries representing the same `fact' give an example of lack of
integrity (caused by redundancy in the database).
integrity constraints can be viewed as a set of assertions to be obeyed when updating a DB to
preserve an error-free state.
even if redundancy is eliminated, the DB may still contain incorrect data.
integrity checks which are important are checks on data items and record types.

Integrity checks on data items can be divided into 4 groups:

1. type checks
e.g. ensuring a numeric field is numeric and not a character - this check should be
performed automatically by the DBMS.

2. redundancy checks
direct or indirect (see data redundancy) - this check is not automatic in most cases.

3. range checks
e.g. to ensure a data item value falls within a specified range of values, such as checking
dates so that say (age > 0 AND age < 110).

4. comparison checks
in this check a function of a set of data item values is compared against a function of
another set of data item values. For example, the max salary for a given set of
employees must be less than the min salary for the set of employees on a higher salary
scale.

A record type may have constraints on the total number of occurrences, or on the insertions and
deletions of records. For example in a patient database there may be a limit on the number of xray
results for each patient or the details of a patients visit to hospital must be kept for a minimum of 5
years before it can be deleted

Centralized control of the database helps maintain integrity, and permits the DBA to define

Page 11 of 181Database System Notes V3.2

31/08/2005

validation procedures to be carried out whenever any update operation is attempted (update
covers modification, creation and deletion).
Integrity is important in a database system - an application run without validation procedures
can produce erroneous data which can then affect other applications using that data.

Page 12 of 181Database System Notes V3.2

31/08/2005

Chapter 2 - Database Analysis
Basic database analysis techniques, Entity Relationship modelling, and mapping ER diagrams to
relations.

Database Analysis
Entity Relationship Modelling - 2
Mapping ER Models into Relations
Advanced ER Mapping

Page 13 of 181Database System Notes V3.2

31/08/2005

Database Analysis
Contents

Introduction
Database Analysis Life Cycle
Three-level Database Model
Basics

Entities
Attribute

Keys
Relationships

Degree of a Relationship
Degree of a Relationship
Replacing ternary relationships
Cardinality
Optionality
Entity Sets
Confirming Correctness
Deriving the relationship parameters
Redundant relationships
Redundant relationships example
Splitting n:m Relationships
Splitting n:m Relationships - Example
Constructing an ER model

This unit it concerned with the process of taking a database specification from a customer and
implementing the underlying database structure necessary to support that specification.

Introduction
Data analysis is concerned with the NATURE and USE of data. It involves the identification of the
data elements which are needed to support the data processing system of the organization, the
placing of these elements into logical groups and the definition of the relationships between the
resulting groups.

Other approaches, e.g. D.F.Ds and Flowcharts, have been concerned with the flow of data-dataflow
methodologies. Data analysis is one of several data structure based methodologies Jackson SP/D is
another.

Systems analysts often, in practice, go directly from fact finding to implementation dependent data
analysis. Their assumptions about the usage of properties of and relationships between data elements
are embodied directly in record and file designs and computer procedure specifications. The
introduction of Database Management Systems (DBMS) has encouraged a higher level of analysis,
where the data elements are defined by a logical model or `schema' (conceptual schema). When
discussing the schema in the context of a DBMS, the effects of alternative designs on the efficiency
or ease of implementation is considered, i.e. the analysis is still somewhat implementation
dependent. If we consider the data relationships, usages and properties that are important to the
business without regard to their representation in a particular computerised system using particular
software, we have what we are concerned with, implementationindependent data analysis.

Page 14 of 181Database System Notes V3.2

31/08/2005

It is fair to ask why data analysis should be done if it is possible, in practice to go straight to a
computerised system design. Data analysis is time consuming; it throws up a lot of questions.
Implementation may be slowed down while the answers are sought. It is more expedient to have an
experienced analyst `get on with the job' and come up with a design straight away. The main
difference is that data analysis is more likely to result in a design which meets both present and
future requirements, being more easily adapted to changes in the business or in the computing
equipment. It can also be argued that it tends to ensure that policy questions concerning the
organisations' data are answered by the managers of the organisation, not by the systems analysts.
Data analysis may be thought of as the `slow and careful' approach, whereas omitting this step is
`quick and dirty'.

From another viewpoint, data analysis provides useful insights for general design principals which
will benefit the trainee analyst even if he finally settles for a `quick and dirty' solution.

The development of techniques of data analysis have helped to understand the structure and meaning
of data in organisations. Data analysis techniques can be used as the first step of extrapolating the
complexities of the real world into a model that can be held on a computer and be accessed by many
users. The data can be gathered by conventional methods such as interviewing people in the
organisation and studying documents. The facts can be represented as objects of interest. There are a
number of documentation tools available for data analysis, such as entityrelationship diagrams.
These are useful aids to communication, help to ensure that the work is carried out in a thorough
manner, and ease the mapping processes that follow data analysis. Some of the documents can be
used as source documents for the data dictionary.

In data analysis we analyse the data and build a systems representation in the form of a data model
(conceptual). A conceptual data model specifies the structure of the data and the processes which use
that data.

Data Analysis = establishing the nature of data.

Functional Analysis = establishing the use of data.

However, since Data and Functional Analysis are so intermixed, we shall use the term Data Analysis
to cover both.

Building a model of an organisation is not easy. The whole organisation is too large as there will be
too many things to be modelled. It takes too long and does not achieve anything concrete like an
information system, and managers want tangible results fairly quickly. It is therefore the task of the
data analyst to model a particular view of the organisation, one which proves reasonable and
accurate for most applications and uses. Data has an intrinsic structure of its own, independent of
processing, reports formats etc. The data model seeks to make explicit that structure

Data analysis was described as establishing the nature and use of data.

Database Analysis Life Cycle

Page 15 of 181Database System Notes V3.2

31/08/2005

Figure : Database Analysis Life Cycle

When a database designer is approaching the problem of constructing a database system, the logical
steps followed is that of the database analysis life cycle:

Database study - here the designer creates a written specification in words for the database
system to be built. This involves:

analysing the company situation - is it an expanding company, dynamic in its
requirements, mature in nature, solid background in employee training for new internal
products, etc. These have an impact on how the specification is to be viewed.
define problems and constraints - what is the situation currently? How does the
company deal with the task which the new database is to perform. Any issues around the
current method? What are the limits of the new system?
define objectives - what is the new database system going to have to do, and in what
way must it be done. What information does the company want to store specifically, and
what does it want to calculate. How will the data evolve.
define scope and boundaries - what is stored on this new database system, and what it
stored elsewhere. Will it interface to another database?

Database Design - conceptual, logical, and physical design steps in taking specifications to
physical implementable designs. This is looked at more closely in a moment.
Implementation and loading - it is quite possible that the database is to run on a machine
which as yet does not have a database management system running on it at the moment. If this
is the case one must be installed on that machine. Once a DBMS has been installed, the
database itself must be created within the DBMS. Finally, not all databases start completely
empty, and thus must be loaded with the initial data set (such as the current inventory, current
staff names, current customer details, etc).
Testing and evaluation - the database, once implemented, must be tested against the
specification supplied by the client. It is also useful to test the database with the client using
mock data, as clients do not always have a full understanding of what they thing they have
specified and how it differs from what they have actually asked for! In addition, this step in the
life cycle offers the chance to the designer to fine-tune the system for best performance.
Finally, it is a good idea to evaluate the database in-situ, along with any linked applications.
Operation - this step is where the system is actually in real usage by the company.

Page 16 of 181Database System Notes V3.2

31/08/2005

Maintenance and evolution - designers rarely get everything perfect first time, and it may be
the case that the company requests changes to fix problems with the system or to recommend
enhancements or new requirements.

Commonly development takes place without change to the database structure. In elderly
systems the DB structure becomes fossilised.

Three-level Database Model
Often referred to as the three-level model, this is where the design moves from a written
specification taken from the real-world requirements to a physically-implementable design for a
specific DBMS. The three levels commonly referred to are `Conceptual Design', `Data Model
Mapping', and `Physical Design'.

Figure : Logic behind the three level architecture

The specification is usually in the form of a written document containing customer requirements,
mock reports, screen drawings and the like, written by the client to indicate the requirements which
the final system is to have. Often such data has to be collected together from a variety of internal
sources to the company and then analysed to see if the requirements are necessary, correct, and
efficient.

Once the Database requirements have been collated, the Conceptual Design phase takes the
requirements and produces a high-level data model of the database structure. In this module, we use
ER modelling to represent high-level data models, but there are other techniques. This model is
independent of the final DBMS which the database will be installed in.

Next, the Conceptual Design phase takes the high-level data model it taken and converted into a
conceptual schema, which is specific to a particular DBMS class (e.g. relational). For a relational
system, such as Oracle, an appropriate conceptual schema would be relations.

Finally, in the Physical Design phase the conceptual schema is converted into database internal
structures. This is specific to a particular DBMS product.

Basics
Entity Relationship (ER) modelling

is a design tool
is a graphical representation of the database system

Page 17 of 181Database System Notes V3.2

31/08/2005

provides a high-level conceptual data model
supports the user's perception of the data
is DBMS and hardware independent
had many variants
is composed of entities, attributes, and relationships

Entities

An entity is any object in the system that we want to model and store information about
Individual objects are called entities
Groups of the same type of objects are called entity types or entity sets
Entities are represented by rectangles (either with round or square corners)

Figure: Entities

There are two types of entities; weak and strong entity types.

Attribute

All the data relating to an entity is held in its attributes.
An attribute is a property of an entity.
Each attribute can have any value from its domain.
Each entity within an entity type:

May have any number of attributes.
Can have different attribute values than that in any other entity.
Have the same number of attributes.

Attributes can be
simple or composite
single-valued or multi-valued
Attributes can be shown on ER models
They appear inside ovals and are attached to their entity.
Note that entity types can have a large number of attributes... If all are shown then the
diagrams would be confusing. Only show an attribute if it adds information to the ER diagram,
or clarifies a point.

Figure : Attributes

Keys

Page 18 of 181Database System Notes V3.2

31/08/2005

A key is a data item that allows us to uniquely identify individual occurrences or an entity
type.
A candidate key is an attribute or set of attributes that uniquely identifies individual
occurrences or an entity type.
An entity type may have one or more possible candidate keys, the one which is selected is
known as the primary key.
A composite key is a candidate key that consists of two or more attributes
The name of each primary key attribute is underlined.

Relationships

A relationship type is a meaningful association between entity types
A relationship is an association of entities where the association includes one entity from each
participating entity type.
Relationship types are represented on the ER diagram by a series of lines.
As always, there are many notations in use today...
In the original Chen notation, the relationship is placed inside a diamond, e.g. managers
manage employees:

Figure : Chens notation for relationships

For this module, we will use an alternative notation, where the relationship is a label on the
line. The meaning is identical

Figure : Relationships used in this document

Degree of a Relationship
The number of participating entities in a relationship is known as the degree of the
relationship.
If there are two entity types involved it is a binary relationship type

Figure : Binary Relationships

If there are three entity types involved it is a ternary relationship type

Page 19 of 181Database System Notes V3.2

31/08/2005

Figure : Ternary relationship

It is possible to have a n-ary relationship (e.g. quaternary or unary).
Unary relationships are also known as a recursive relationship.

Figure : Recursive relationship

It is a relationship where the same entity participates more than once in different roles.
In the example above we are saying that employees are managed by employees.
If we wanted more information about who manages whom, we could introduce a second entity
type called manager.

Degree of a Relationship
It is also possible to have entities associated through two or more distinct relationships.

Figure : Multiple relationships

In the representation we use it is not possible to have attributes as part of a relationship. To
support this other entity types need to be developed.

Replacing ternary relationships
When ternary relationships occurs in an ER model they should always be removed before finishing
the model. Sometimes the relationships can be replaced by a series of binary relationships that link
pairs of the original ternary relationship.

Page 20 of 181Database System Notes V3.2

31/08/2005

Figure : A ternary relationship example

This can result in the loss of some information - It is no longer clear which sales assistant sold
a customer a particular product.
Try replacing the ternary relationship with an entity type and a set of binary relationships.

Relationships are usually verbs, so name the new entity type by the relationship verb rewritten as a
noun.

The relationship sells can become the entity type sale.

Figure : Replacing a ternary relationship

So a sales assistant can be linked to a specific customer and both of them to the sale of a
particular product.
This process also works for higher order relationships.

Cardinality
Relationships are rarely one-to-one
For example, a manager usually manages more than one employee
This is described by the cardinality of the relationship, for which there are four possible
categories.
One to one (1:1) relationship
One to many (1:m) relationship
Many to one (m:1) relationship
Many to many (m:n) relationship
On an ER diagram, if the end of a relationship is straight, it represents 1, while a "crow's foot"
end represents many.
A one to one relationship - a man can only marry one woman, and a woman can only marry
one man, so it is a one to one (1:1) relationship

Figure : One to One relationship example

Page 21 of 181Database System Notes V3.2

31/08/2005

A one to may relationship - one manager manages many employees, but each employee only
has one manager, so it is a one to many (1:n) relationship

Figure : One to Many relationship example

A many to one relationship - many students study one course. They do not study more than
one course, so it is a many to one (m:1) relationship

Figure : Many to One relationship example

A many to many relationship - One lecturer teaches many students and a student is taught by
many lecturers, so it is a many to many (m:n) relationship

Figure : Many to Many relationship example

Optionality
A relationship can be optional or mandatory.

If the relationship is mandatory
an entity at one end of the relationship must be related to an entity at the other end.
The optionality can be different at each end of the relationship
For example, a student must be on a course. This is mandatory. To the relationship `student
studies course' is mandatory.
But a course can exist before any students have enrolled. Thus the relationship `course
is_studied_by student' is optional.
To show optionality, put a circle or `0' at the `optional end' of the relationship.
As the optional relationship is `course is_studied_by student', and the optional part of this is
the student, then the `O' goes at the student end of the relationship connection.

Figure : Optionality example

It is important to know the optionality because you must ensure that whenever you create a
new entity it has the required mandatory links.

Page 22 of 181Database System Notes V3.2

31/08/2005

Entity Sets
Sometimes it is useful to try out various examples of entities from an ER model. One reason for this
is to confirm the correct cardinality and optionality of a relationship. We use an `entity set diagram'
to show entity examples graphically. Consider the example of `course is_studied_by student'.

Figure : Entity set example

Confirming Correctness

Figure : Entity set confirming errors

Use the diagram to show all possible relationship scenarios.
Go back to the requirements specification and check to see if they are allowed.
If not, then put a cross through the forbidden relationships
This allows you to show the cardinality and optionality of the relationship

Deriving the relationship parameters
To check we have the correct parameters (sometimes also known as the degree) of a relationship, ask
two questions:

1. One course is studied by how many students? Answer = `zero or more'.
This gives us the degree at the `student' end.
The answer `zero or more' needs to be split into two parts.
The `more' part means that the cardinality is `many'.
The `zero' part means that the relationship is `optional'.
If the answer was `one or more', then the relationship would be `mandatory'.

2. One student studies how many courses? Answer = `One'
This gives us the degree at the `course' end of the relationship.

Page 23 of 181Database System Notes V3.2

31/08/2005

The answer `one' means that the cardinality of this relationship is 1, and is `mandatory'
If the answer had been `zero or one', then the cardinality of the relationship would have
been 1, and be `optional'.

Redundant relationships
Some ER diagrams end up with a relationship loop.

check to see if it is possible to break the loop without losing info
Given three entities A, B, C, where there are relations A-B, B-C, and C-A, check if it is
possible to navigate between A and C via B. If it is possible, then A-C was a redundant
relationship.
Always check carefully for ways to simplify your ER diagram. It makes it easier to read the
remaining information.

Redundant relationships example
Consider entities `customer' (customer details), `address' (the address of a customer) and
`distance' (distance from the company to the customer address).

Figure : Redundant relationship

Splitting n:m Relationships
A many to many relationship in an ER model is not necessarily incorrect. They can be replaced using
an intermediate entity. This should only be done where:

the m:n relationship hides an entity
the resulting ER diagram is easier to understand.

Splitting n:m Relationships - Example
Consider the case of a car hire company. Customers hire cars, one customer hires many card and a
car is hired by many customers.

Figure : Many to Many example

The many to many relationship can be broken down to reveal a `hire' entity, which contains an
attribute `date of hire'.

Page 24 of 181Database System Notes V3.2

31/08/2005

Figure : Splitting the Many to Many example

Constructing an ER model
Before beginning to draw the ER model, read the requirements specification carefully. Document
any assumptions you need to make.

1. Identify entities - list all potential entity types. These are the object of interest in the system. It
is better to put too many entities in at this stage and them discard them later if necessary.

2. Remove duplicate entities - Ensure that they really separate entity types or just two names for
the same thing.

Also do not include the system as an entity type
e.g. if modelling a library, the entity types might be books, borrowers, etc.
The library is the system, thus should not be an entity type.

3. List the attributes of each entity (all properties to describe the entity which are relevant to the
application).

Ensure that the entity types are really needed.
are any of them just attributes of another entity type?
if so keep them as attributes and cross them off the entity list.
Do not have attributes of one entity as attributes of another entity!

4. Mark the primary keys.
Which attributes uniquely identify instances of that entity type?
This may not be possible for some weak entities.

5. Define the relationships
Examine each entity type to see its relationship to the others.

6. Describe the cardinality and optionality of the relationships
Examine the constraints between participating entities.

7. Remove redundant relationships
Examine the ER model for redundant relationships.

ER modelling is an iterative process, so draw several versions, refining each one until you are happy
with it. Note that there is no one right answer to the problem, but some solutions are better than
others!

Page 25 of 181Database System Notes V3.2

31/08/2005

Entity Relationship Modelling - 2
Contents

Country Bus Company
Entities
Relationships
Draw E-R Diagram
Attributes
Problems with ER Models
Fan traps
Chasm traps
Enhanced ER Models (EER)
Specialisation
Generalisation
Categorisation
Aggregation

Overview

construct an ER model
understand the problems associated with ER models
understand the modelling concepts of Enhanced ER modelling

Country Bus Company
A Country Bus Company owns a number of busses. Each bus is allocated to a particular route,
although some routes may have several busses. Each route passes through a number of towns. One or
more drivers are allocated to each stage of a route, which corresponds to a journey through some or
all of the towns on a route. Some of the towns have a garage where busses are kept and each of the
busses are identified by the registration number and can carry different numbers of passengers, since
the vehicles vary in size and can be single or double-decked. Each route is identified by a route
number and information is available on the average number of passengers carried per day for each
route. Drivers have an employee number, name, address, and sometimes a telephone number.

Entities
Bus - Company owns busses and will hold information about them.
Route - Buses travel on routes and will need described.
Town - Buses pass through towns and need to know about them
Driver - Company employs drivers, personnel will hold their data.
Stage - Routes are made up of stages
Garage - Garage houses buses, and need to know where they are.

Relationships
A bus is allocated to a route and a route may have several buses.
Bus-route (m:1) is serviced by
A route comprises of one or more stages.

Page 26 of 181Database System Notes V3.2

31/08/2005

route-stage (1:m) comprises
One or more drivers are allocated to each stage.
driver-stage (m:1) is allocated
A stage passes through some or all of the towns on a route.
stage-town (m:n) passes-through
A route passes through some or all of the towns
route-town (m:n) passes-through
Some of the towns have a garage
garage-town (1:1) is situated
A garage keeps buses and each bus has one `home' garage
garage-bus (m:1) is garaged

Draw E-R Diagram

Figure : Bus Company

Attributes
Bus (reg-no,make,size,deck,no-pass)
Route (route-no,avg-pass)
Driver (emp-no,name,address,tel-no)
Town (name)
Stage (stage-no)
Garage (name,address)

Problems with ER Models
There are several problems that may arise when designing a conceptual data model. These are known
as connection traps.

There are two main types of connection traps:

1. fan traps
2. chasm traps

Fan traps
A fan trap occurs when a model represents a relationship between entity types, but the pathway

Page 27 of 181Database System Notes V3.2

31/08/2005

between certain entity occurrences is ambiguous. It occurs when 1:m relationships fan out from a
single entity.

Figure : Fan Trap

A single site contains many departments and employs many staff. However, which staff work in a
particular department?

The fan trap is resolved by restructuring the original ER model to represent the correct association.

Figure : Resolved Fan Trap

Chasm traps
A chasm trap occurs when a model suggests the existence of a relationship between entity types, but
the pathway does not exist between certain entity occurrences.

It occurs where there is a relationship with partial participation, which forms part of the pathway
between entities that are related.

Figure : Chasm Trap

A single branch is allocated many staff who oversee the management of properties for rent.
Not all staff oversee property and not all property is managed by a member of staff.
What properties are available at a branch?
The partial participation of Staff and Property in the oversees relation means that some
properties cannot be associated with a branch office through a member of staff.
We need to add the missing relationship which is called `has' between the Branch and the
Property entities.
You need to therefore be careful when you remove relationships which you consider to be
redundant.

Figure : Resolved Chasm Trap

Page 28 of 181Database System Notes V3.2

31/08/2005

Enhanced ER Models (EER)
The basic concepts of ER modelling is not powerful enough for some complex applications... We
require some additional semantic modelling concepts:

Specialisation
Generalisation
Categorisation
Aggregation

First we need some new entity constructs.

Superclass - an entity type that includes distinct subclasses that require to be represented in a
data model.
Subclass - an entity type that has a distinct role and is also a member of a superclass.

Figure : Superclass and subclasses

Subclasses need not be mutually exclusive; a member of staff may be a manager and a sales person.

The purpose of introducing superclasses and subclasses is to avoid describing types of staff with
possibly different attributes within a single entity. This could waste space and you might want to
make some attributes mandatory for some types of staff but other staff would not need these
attributes at all.

Specialisation
This is the process of maximising the differences between members of an entity by identifying their
distinguishing characteristics.

Staff(staff_no,name,address,dob)
Manager(bonus)
Secretary(wp_skills)
Sales_personnel(sales_area, car_allowance)

Page 29 of 181Database System Notes V3.2

31/08/2005

Figure : Specialisation in action

Here we have shown that the manages relationship is only applicable to the Manager subclass,
whereas the works_for relationship is applicable to all staff.
It is possible to have subclasses of subclasses.

Generalisation
Generalisation is the process of minimising the differences between entities by identifying common
features.

This is the identification of a generalised superclass from the original subclasses. This is the process
of identifying the common attributes and relationships.

For instance, taking:

 car(regno,colour,make,model,numSeats)
 motorbike(regno,colour,make,model,hasWindshield)

And forming:

 vehicle(regno,colour,make,model,numSeats,hasWindshielf)

In this case vehicle has numSeats which would be NULL if the vehicle was a motorbike, and has
hasWindshield which would be NULL if it was a car.

Categorisation
Left as an exercise to research.

Aggregation
Left as an exercise to research.

Page 30 of 181Database System Notes V3.2

31/08/2005

Mapping ER Models into Relations
Contents

What is a relation?
Foreign keys
Preparing to map the ER model
Mapping 1:1 relationships
Mandatory at both ends
When not to combine
If not combined...
Example
Mandatory <->Optional
Mandatory <->Optional - Subsume?
Summary...
Optional at both ends...
Mapping 1:m relationships
Mapping n:m relationships
Summary

Overview

map 1:1 relationships into relations
map 1:m relationships into relations
map m:n relationships into relations
differences between mapping optional and mandatory relationships.

What is a relation?
A relation is a table that holds the data we are interested in. It is two-dimensional and has rows and
columns.

Each entity type in the ER model is mapped into a relation.

The attributes become the columns.
The individual entities become the rows.

Figure : a relation

Page 31 of 181Database System Notes V3.2

31/08/2005

Relations can be represented textually as:

 tablename(primary key, attribute 1, attribute 2, ... , foreign key)

If matric_no was the primary key, and there were no foreign keys, then the table above could be
represented as:

 student(matric no, name, address, date_of_birth)

When referring to relations or tables, cardinality is considered to the the number of rows in the
relation or table, and arity is the number of columns in a table or attributes in a relation.

Foreign keys
A foreign key is an attribute (or group of attributes) that is the primary key to another relation.

Roughly, each foreign key represents a relationship between two entity types.
They are added to relations as we go through the mapping process.
They allow the relations to be linked together.
A relation can have several foreign keys.
It will generally have a foreign key from each table that it is related to.
Foreign keys are usually shown in italics or with a wiggly underline.

Preparing to map the ER model
Before we start the actual mapping process we need to be certain that we have simplified the ER
model as much as possible.

This is the ideal time to check the model, as it is really the last chance to make changes to the ER
model without causing major complications.

Mapping 1:1 relationships
Before tackling a 1:1 relationship, we need to know its optionality.

There are three possibilities the relationship can be:

1. mandatory at both ends
2. mandatory at one end and optional at the other
3. optional at both ends

Mandatory at both ends
If the relationship is mandatory at both ends it is often possible to subsume one entity type into the
other.

The choice of which entity type subsumes the other depends on which is the most important
entity type (more attributes, better key, semantic nature of them).
The result of this amalgamation is that all the attributes of the `swallowed up' entity become
attributes of the more important entity.
The key of the subsumed entity type becomes a normal attribute.
If there are any attributes in common, the duplicates are removed.

Page 32 of 181Database System Notes V3.2

31/08/2005

The primary key of the new combined entity is usually the same as that of the original more
important entity type.

When not to combine
There are a few reason why you might not combine a 1:1 mandatory relationship.

the two entity types represent different entities in the `real world'.
the entities participate in very different relationships with other entities.
efficiency considerations when fast responses are required or different patterns of updating
occur to the two different entity types.

If not combined...
If the two entity types are kept separate then the association between them must be represented by a
foreign key.

The primary key of one entity type comes the foreign key in the other.
It does not matter which way around it is done but you should not have a foreign key in each
entity.

Example
Two entity types; staff and contract.
Each member of staff must have one contract and each contract must have one member of staff
associated with it.
It is therefore a mandatory relations at both ends.

Figure : 1:1 mandatory relationship

These to entity types could be amalgamated into one.

 Staff(emp_no, name, cont_no, start, end, position, salary)

or kept apart and a foreign key used

 Staff(emp_no, name, contract_no)
 Contract(cont_no, start, end, position, salary)

or

 Staff(emp_no, name)
 Contract(cont_no, start, end, position, salary, emp_no)

Mandatory <->Optional

Page 33 of 181Database System Notes V3.2

31/08/2005

The entity type of the optional end may be subsumed into the mandatory end as in the previous
example.

It is better NOT to subsume the mandatory end into the optional end as this will create null entries.

Figure : 1:1 with 1 optional end

If we add to the specification that each staff member may have at most one contract (thus making the
relation optional at one end).

Map the foreign key into Staff - the key is null for staff without a contract.

 Staff(emp_no, name, contract_no)
 Contract(cont_no, start, end, position, salary)

Map the foreign key into Contract - emp_no is mandatory thus never null.

 Staff(emp_no, name)
 Contract(cont_no, start, end, position, salary, emp_no)

Example

Consider this example:

Staff “Gordon”, empno 10, contract no 11.
Staff “Andrew”, empno 11, no contract.
Contract 11, from 1st Jan 2001 to 10th Jan 2001, lecturer, on £2.00 a year.

Foreign key in Staff:

Contract Table:

Staff Table:

However, Foreign key in Contract:

Cont_no Start End Position Salary
11 1st Jan 2001 10th Jan 2001 Lecturer £2.00

Empno Name Contract No
10 Gordon 11

11 Andrew NULL

Page 34 of 181Database System Notes V3.2

31/08/2005

Contract Table:

Staff Table:

As you can see, both ways store the same information, but the second way has no NULLs.

Mandatory <->Optional - Subsume?
The reasons for not subsuming are the same as before with the following additional reason.

very few of the entities from the mandatory end are involved in the relationship. This could
cause a lot of wasted space with many blank or null entries.

Figure : 1 optional end

If only a few lecturers manage courses and Course is subsumed into Lecturer then there would
be many null entries in the table.

 Lecturer(lect_no, l_name, cno, c_name, type, yr_vetted, external)

It would be better to keep them separate.

 Lecturer(lect_no, l_name)
 Course(cno, c_name, type, yr_vetted, external,lect_no)

Summary...
So for 1:1 optional relationships, take the primary key from the `mandatory end' and add it to the
`optional end' as a foreign key.

So, given entity types A and B, where A <->B is a relationship where the A end it optional, the result
would be:

 A (primary key,attribute,...,foreign key to B)
 B (primary key,attribute,...)

Optional at both ends...

Cont_no Start End Position Salary Empno
11 1st Jan 2001 10th Jan 2001 Lecturer £2.00 10

Empno Name
10 Gordon

11 Andrew

Page 35 of 181Database System Notes V3.2

31/08/2005

Such examples cannot be amalgamated as you could not select a primary key. Instead, one foreign
key is used as before.

Figure : 2 optional end

Each staff member may lease up to one car
Each car may be leased by at most one member of staff
If these were combined together...

 Staff_car(emp_no, name, reg_no, year, make, type, colour)

what would be the primary key?

If emp_no is used then all the cars which are not being leased will not have a key.
Similarly, if the reg_no is used, all the staff not leasing a car will not have a key.
A compound key will not work either.

Mapping 1:m relationships
To map 1:m relationships, the primary key on the `one side' of the relationship is added to the `many
side' as a foreign key.

For example, the 1:m relationship `course-student':

Figure : Mapping 1:m relationships

Assuming that the entity types have the following attributes:

 Course(course_no, c_name)
 Student(matric_no, st_name, dob)

Then after mapping, the following relations are produced:

 Course(course_no, c_name)
 Student(matric_no, st_name, dob, course_no)

If an entity type participates in several 1:m relationships, then you apply the rule to each
relationship, and add foreign keys as appropriate.

Mapping n:m relationships
If you have some m:n relationships in your ER model then these are mapped in the following

Page 36 of 181Database System Notes V3.2

31/08/2005

manner.

A new relation is produced which contains the primary keys from both sides of the
relationship
These primary keys form a composite primary key.

Figure : Mapping n:m relationships

Thus

 Student(matric_no, st_name, dob)
 Module(module_no, m_name, level, credits)

becomes

 Student(matric_no, st_name, dob)
 Module(module_no, m_name, level, credits)
 Studies(matric_no,module_no)

This is equivalent to:

Figure : After Mapping a n:m relationship

 Student(matric_no,st_name,dob)
 Module(module_no,m_name,level,credits)
 Study()

Summary
1-1 relationships
Depending on the optionality of the relationship, the entities are either combined or the
primary key of one entity type is placed as a foreign key in the other relation.
1-m relationships
The primary key from the `one side' is placed as a foreign key in the `many side'.
m-n relationships
A new relation is created with the primary keys from each entity forming a composite key.

Page 37 of 181Database System Notes V3.2

31/08/2005

Advanced ER Mapping
Contents

Mapping parallel relationships
Mapping 1:m in unary relationships
Mapping superclasses and subclasses
Example

Overview

map parallel relationships into relations
map unary relationships into relations
map superclasses and subclasses into relations

Mapping parallel relationships
Parallel relationships occur when there are two or more relationships between two entity types (e.g.
employees own and service cars).

Figure : Parallel Relationships

In order to distinguish between the two roles we can give the foreign keys different names.
Each relationship is mapped according to the rules, and we end up with two foreign keys
added to the Vehicle table.
So we add the employee_no as the owner_no in order to represent the `owns' relationship.
We then add the employee_no as the serviced_by attribute in order to represent the `services'
relationship.
Before mapping

 Employee(employee_no,...)
 Vehicle(registration_no,...)

After mapping

 Employee(employee_no,...)
 Vehicle(registration_no,owner_no,serviced_by,...)

Mapping 1:m in unary relationships

Page 38 of 181Database System Notes V3.2

31/08/2005

Figure : Mapping recursive relationships

Employees manage employees
Each employee has an employee_no with is the primary key
We represent the manages relationship by adding a manager_no as a foreign key.
This is in fact the employee_no of the manager.
It is given a different name to clearly convey what it represents, and to ensure that all the
entity type's attributes have unique names, as to do otherwise would be invalid.
After mapping

 Employee(employee_no,manager_no, name,...)

So in general, for unary 1:n relationships, the foreign key is the primary key of the same table,
but is given a different name.
Note that the relationship is optional in both directions because not all staff can be managers,
and the top manager is not managed by anybody else.

Mapping superclasses and subclasses
There are three ways of implementing superclasses and subclasses and it depends on the application
which will be the most suitable.

Only the first method is a true reflection of the superclasses and subclasses and if either of the other
methods is preferential then the model should not have subclasses.

1. One relation for the superclass and one relation for each subclass.
2. One relation for each subclass.
3. One relation for the superclass.

Example

Page 39 of 181Database System Notes V3.2

31/08/2005

Figure : Superclass/Subclass mapping example

 Staff(staff_no,name,address,dob)
 Manager(bonus)
 Secretary(wp_skills)
 Sales_personnel(sales_area, car_allowance)

One relation for the superclass and one relation for each subclass:

 Staff(staff_no,name,address,dob)
 Manager(staff_no,bonus)
 Secretary(staff_no,wp_skills)
 Sales_personnel(staff_no,sales_area, car_allowance)

The primary key of the superclass is mapped into each subclass and becomes the subclasses primary
key. This represents most closely the EER model. However it can cause efficiency problems as there
needs to be a lot of joins if the additional information is often needed for all staff.

One relation for each subclass:

 Manager(staff_no,name,address,dob,bonus)
 Secretary(staff_no,name,address,dob,wp_skills)
 Sales_personnel(staff_no,name,address,dob,sales_area, car_allowance)

All attributes are mapped into each subclass. It is equivalent to having three separate entity types and
no superclass.

It is useful if there are no overlapping entities and there are no relationships between the superclass
and other entity types. It is poor if the subclasses are not disjoint as there is data duplication in each
relation which can cause problems with consistency.

One relation for the superclass:

 Staff(staff_no,name,address,dob, bonus, wp_skills, sales_area, car_allowance)

This represents a single entity type with no subclasses.

This is no good if the subclasses are not disjoint or if there are relationships between the subclasses
and the other entities.

Page 40 of 181Database System Notes V3.2

31/08/2005

In addition, there will be many null fields if the subclasses do not overlap a lot. However, it avoids
any joins to get additional information about each member of staff.

Page 41 of 181Database System Notes V3.2

31/08/2005

Chapter 3 - SQL
Sections covering basic SQL usage.

Simple SELECT statements
Logical Operators and Aggregation
JOINs and VIEWs
Subqueries and Schema

Page 42 of 181Database System Notes V3.2

31/08/2005

Structured Query Language
Contents

Database Models
Relational Databases
Relational Data Structure
Domain and Integrity Constraints
Structure of a Table

CAR
DRIVER
Relationship between CAR and DRIVER
Example Data
Columns or Attributes

Primary Keys
SQL Basics
Simple SELECT
Comments
SELECT filters
Comparisons
Dates

BETWEEN
NULL
LIKE

In the other chapters of this course consideration is given to producing a good design for a database
structure or schema. In this chapter the focus is on applying this schema to a database management
system, and then using that DBMS to allow storage and retrieval of data.

To communicate with the database system itself we need a language. SQL is an international
standard language for manipulating relational databases. It is based on an IBM product. SQL is short
for Structured Query Language.

SQL can create schemas, delete them, and change them. It can also put data into schemas and
remove data. It is a data handling language, but it is not a programming language.

SQL is a DSL (Data Sub Language), which is really a combination of two languages. These are the
Data Definition Language (DDL) and the Data Manipulation Language (DML). Schema changes are
part of the DDL, while data changes are part of the DML. We will consider both parts of the DSL in
this discussion of SQL.

Database Models
A data model comprises

a data structure
a set of integrity constraints
operations associated with the data structure

Examples of data models include:

Page 43 of 181Database System Notes V3.2

31/08/2005

hierarchic
network
relational

Models other than the relational database module used to be quite popular. Each model type is
appropriate to particular types of problem. The Relational model type is the most popular in use
today, and the other types are not discussed further.

Relational Databases
The relational data model comprises:

relational data structure
relational integrity constraints
relational algebra or equivalent (SQL)

SQL is an ISO language based on relational algebra
relational algebra is a mathematical formulation

Relational Data Structure
A relational data structure is a collection of tables or relations.

A relation is a collection of rows or tuples
A tuple is a collection of columns or attributes
A domain is a pool of values from which the actual attribute values are taken.

Figure : Tuples and Domains

Domain and Integrity Constraints
Domain Constraints

limit the range of domain values of an attribute
specify uniqueness and `nullness' of an attribute
specify a default value for an attribute when no value is provided.

Page 44 of 181Database System Notes V3.2

31/08/2005

Entity Integrity
every tuple is uniquely identified by a unique non-null attribute, the primary key.

Referential Integrity
rows in different tables are correctly related by valid key values (`foreign' keys refer to
primary keys).

Structure of a Table
In the design process tables are defined, and the relationships between tables identified. Remember a
relationship is just a link between two concepts. Consider a table holding "drivers" and a table
holding "car" information... Each car is owned by a driver, and therefore there is a link between "car"
and "driver" to indicate which driver owns which car.

In the subsequent pages we will refer back to this driver and car arrangement. To make the examples
easier, lets create some example data.

CAR

The CAR table has the following structure:

REGNO : The registration number of the car
MAKE : The manufacturer of the car
COLOUR: The colour of the car
PRICE : The price of the car when it was bought new

DRIVER

The DRIVER table has the following structure:

NAME : The full name of the driver
DOB : The data of birth of the driver

Relationship between CAR and DRIVER

The DRIVER and the CAR has a relationship between them of N:1. This indicates that a CAR can
have only 1 DRIVER, but that a DRIVER can own more than 1 CAR simultaneously.

Figure : ER Diagram of DRIVER and CAR

In the design section we can see that this requires a FOREIGN KEY in the CAR end of the
relationship. This foreign key allows us to implement the relationship in the database. We will call
this field OWNER.

Page 45 of 181Database System Notes V3.2

31/08/2005

Example Data

DRIVER

CAR

Columns or Attributes

Each column is given a name which is unique within a table

Each column holds data of one specified type. E.g.

 integer decimal
 character text data
 -- the range of values can be further constrained

If a column of a row contains no data, we say it is NULL. For example, a car just off the production
line might not have an owner in the database until someone buys the car. A NULL value may also
indicate that the value is unavailable or inappropriate . This might be the case for a car which is
being destroyed or a car where two people are arguing in court that they are both the owner.

Some important rules:

All rows of a table must be different in some way from all other rows.
Sometimes a row is referred to as a Tuple.
Cardinality is the number of ROWS in a table.
Arity is the number of COLUMNS in a table.

Primary Keys
A table requires a key which uniquely identifies each row in the table. This is entity integrity.

The key could have one column, or it could use all the columns. It should not use more columns than
necessary. A key with more than one column is called a composite key.

A table may have several possible keys, the candidate keys, from which one is chosen as the primary
key.

NAME DOB
Jim Smith 11 Jan 1980
Bob Smith 23 Mar 1981
Bob Jones 3 Dec 1986

REGNO MAKE COLOUR PRICE OWNER
F611 AAA FORD RED 12000 Jim Smith
J111 BBB SKODA BLUE 11000 Jim Smith
A155 BDE MERCEDES BLUE 22000 Bob Smith
K555 GHT FIAT GREEN 6000 Bob Jones
SC04 BFE SMART BLUE 13000

Page 46 of 181Database System Notes V3.2

31/08/2005

No part of a primary key may be NULL.

If the rows of the data are not unique, it is necessary to generate an artificial primary key.

In our example, DRIVER has a primary key of NAME, and CAR has a primary key of REGNO.
This database will break if there are two drivers with the same name, but it gives you an idea what
the primary key means...

Note that if for some reason JIM SMITH decided to change his name to "BRIAN SMITH", then not
only would this have to be changed in DRIVER, but it would also have to be changed in CAR. If you
changed it only in DRIVER, there would be some foreign keys pointing to DRIVER looking for a
driver who does not exist. This would be an error called a REFERENTIAL INTEGRITY error, and
the DBMS stops you making changes to the database which would result in such an error.

SQL Basics
Basic SQL Statements include:

CREATE - a data structure
SELECT - read one or more rows from a table
INSERT - one or more rows into a table
DELETE - one or more rows from a table
UPDATE - change the column values in a row
DROP - a data structure

In the remainder of this section only simple SELECT statements are considered.

Simple SELECT
The syntax of a SELECT statement is :

SELECT column FROM tablename

This would produce all the rows from the specified table, but only for the particular column
mentioned. If you want more than one column shown, you can put in multiple columns separating
them with commas, like:

SELECT column1,column2,column3 FROM tablename

If you want to see all the columns of a particular table, you can type:

SELECT * FROM tablename

Lets see it in action on CAR...

Page 47 of 181Database System Notes V3.2

31/08/2005

SELECT * FROM car;

SELECT regno FROM car;

SELECT colour,owner FROM car;

In SQL, you can put extra space characters and return characters just about anywhere without
changing the meaning of the SQL. SQL is also case-insensitive (except for things in quotes). In
addition, SQL in theory should always end with a ';' character. You need to include the ';' if you have
two different SQL queries so that the system can tell when one SQL statement stops and another one
starts. If you forget the ';' the online interface will put one in for you. For these reasons all of the
following statements are identical and valid.

SELECT REGNO FROM CAR;

SELECT REGNO FROM CAR

Select REGNO from CAR

select regno FROM car

SELECT
 regno
 FROM car;

Comments

REGNO MAKE COLOUR PRICE OWNER
F611 AAA FORD RED 12000 Jim Smith
J111 BBB SKODA BLUE 11000 Jim Smith
A155 BDE MERCEDES BLUE 22000 Bob Smith
K555 GHT FIAT GREEN 6000 Bob Jones
SC04 BFE SMART BLUE 13000

REGNO
F611 AAA
J111 BBB
A155 BDE
K555 GHT
SC04 BFE

COLOUR OWNER
RED Jim Smith
BLUE Jim Smith
BLUE Bob Smith
GREEN Bob Jones
BLUE

Page 48 of 181Database System Notes V3.2

31/08/2005

Sometimes you might want to write a comment in somewhere as part of an SQL statement. A
comment in this case is a simple piece of text which is meaningful to yourself, but should be ignored
by the database. The characters '--', when they appear in a query, indicate the start of a comment.
Everything after that point is ignored until the end of that line. The following queries are all
equivalent.

SELECT regno
FROM car;

SELECT regno -- The registration number
FROM car -- The car storage table
;

Warning: You cannot put a comment immediately after a ';'. Comments are only supported within
the text of an SQL statement. The following will cause SQL errors:

SELECT regno
FROM car; -- Error here as comment is after the query

-- Error here as comment is before the start of the query
SELECT regno
FROM car;

SELECT filters
Displaying all the rows of a table can be handy, but if we have tables with millions of rows then this
type of query could take hours. Instead, we can add "filters" onto a SELECT statement to only show
specific rows of a table. These filters are written into an optional part of the SELECT statement,
known as a WHERE clause.

SELECT columns
FROM table
WHERE rule

The "rule" section of the WHERE clause is checked for every row that a select statement would
normally show. If the whole rule is TRUE, then that row is shown, whereas if the rule is FALSE,
then that row is not shown.

The rule itself can be quite complex. The simplest rule is a single equality test, such as "COLOUR =
'RED'".

Without the WHERE rule would show:

SELECT regno from CAR;

From the database we know that only F611 AAA is RED, and the rest of the cars are either BLUE or

REGNO
F611 AAA
J111 BBB
A155 BDE
K555 GHT
SC04 BFE

Page 49 of 181Database System Notes V3.2

31/08/2005

GREEN. Thus a rule COLOUR = 'RED' is only true on the row with F611 AAA, and false
elsewhere. With everything in a query:

SELECT regno from CAR
WHERE colour = 'RED';

An important point to note is that queries are case sensitive between the quotes. Thus 'RED' will
work, but 'red' will produce nothing. The case used in the quotes must match perfectly the case
stored in the table. SQL is not forgiving and if you forget you can be scratching you head for hours
trying to fix it.

Note also that "colour" does not have to appear on the SELECT line as a column name. It can if you
want to see the colour, but there is no requirement for it to be there. Therefore this will work too:

SELECT regno,colour from CAR
WHERE colour = 'RED';

Comparisons
SQL supports a variety of comparison rules for use in a WHERE clause. These include =,!=,<>, <,
<=, >, and >=.

Examples of a single rule using these comparisons are:

Note that when dealing with strings, like RED, you must say 'RED'. When dealing with numbers,
like 10000, you can say '10000' or 10000. The choice is yours.

Dates
Date rules are some of the hardest rules to get right in writing SQL, yet there is nothing particularly
complex about them. The hard part is working out what it means to be GREATER THAN a
particular date.

In date calculations, you can use all the normal comparators.

REGNO
F611 AAA

REGNO COLOUR
F611 AAA RED

WHERE colour = 'RED' The colour attribute must be RED
WHERE colour != 'RED' The colour must be a colour OTHER THAN RED
WHERE colour <> 'RED' The same as !=
WHERE PRICE > 10000 The price of the car is MORE THAN 10000
WHERE PRICE >= 10000 The price of the car is EQUAL TO OR MORE THAN 10000
WHERE PRICE < 10000 The price of the car is LESS THAN 10000
WHERE PRICE <= 10000 The price of the car is EQUAL TO OR LESS THAN 10000

Page 50 of 181Database System Notes V3.2

31/08/2005

SELECT name,dob from driver

SELECT name,dob from driver
WHERE DOB = '3 Dec 1986'

In other comparators, it is important to realise that a date gets bigger as you move into the future, and
smaller as you move into the past. Thus to say 'DATE1 < DATE2' you are stating that DATE1
occurs before DATE2 on a calender. For example, to find all drivers who were born on or after the
1st Jan 1981 you would do:

SELECT name,dob from driver
WHERE DOB >= '1 Jan 1981'

The syntax for dates does change slightly on difference database systems, but the syntax '1 Jan 2000'
works in general on all systems. Oracle also allows dates like '1-Jan-2000' and '1-Jan-00'. If you
specify a year using only the last two digits, Oracle uses the current date to compute the missing
parts of the year, converting '00' to '2000'. Do not get confused by saying '87' for '1987' and ending
up with '2087'!

BETWEEN

Sometimes when you are dealing with dates you want to specify a range of dates to check. The best
way of doing this is using BETWEEN. For instance, to find all the drivers born between 1995 and
1999 you could use:

SELECT name,dob from driver
WHERE DOB between '1 Jan 1985' and '31 Dec 1999'

Note that the dates have day of the month and month in them, and not just the year. In SQL, all dates
must have a month and a year. If you try to use just a year the query will fail.

BETWEEN works for other things, not just dates. For instance, to find cars worth between 5000 and
10000, you could execute:

SELECT regno

NAME DOB
Jim Smith 11 Jan 1980
Bob Smith 23 Mar 1981
Bob Jones 3 Dec 1986

NAME DOB
Bob Jones 3 Dec 1986

NAME DOB
Bob Smith 23 Mar 1981
Bob Jones 3 Dec 1986

NAME DOB
Bob Jones 3 Dec 1986

Page 51 of 181Database System Notes V3.2

31/08/2005

FROM car
where price between 5000 and 10000;

NULL
The NULL value indicates that something has no real value. For this reason the normal value
comparisons will always fail if you are dealing with a NULL. If you are looking for NULL, for
instance looking for cars without owners using OWNER of CAR, all of the following are wrong!

SELECT regno from CAR WHERE OWNER = NULL WRONG!
SELECT regno from CAR WHERE OWNER = 'NULL' WRONG!

Instead SQL has a special comparison operator called IS which allows us to find NULL values.
There is also an opposite to IS, called IS NOT, which finds all the values which are not NULL. So
finding all the regnos of cars with current owners would be (note that if they have an owner, then the
owner has a value and thus is NOT NULL):

SELECT REGNO from CAR
WHERE OWNER is not NULL

And finding cars without owners would be:

SELECT REGNO from CAR
WHERE OWNER is NULL

LIKE
When dealing with strings, sometimes you do not want to match on exact strings like ='RED', but
instead on partial strings, substrings, or particular patterns. This could allow you, for instance, to find
all cars with a colour starting with 'B'. The LIKE operator provides this functionality.

The LIKE operator is used in place of an '=' sign. In its basic form it is identical to '='. For instance,
both of the following statements are identical:

SELECT regno FROM car WHERE colour = 'RED';
SELECT regno FROM car WHERE colour LIKE 'RED';

The power of LIKE is that it supports two special characters, '%' and '-'. These are equivalent to the

REGNO PRICE
K555 GHT

REGNO
F611 AAA
J111 BBB
A155 BDE
K555 GHT

REGNO
SC04 BFE

Page 52 of 181Database System Notes V3.2

31/08/2005

'*' and '?' wildcard characters of DOS. Whenever there is an '-' character in the string, any character
will match. Whenever there is an '%' character in the string, 0 or more characters will match.
Consider these rules:

Note however that LIKE is more powerful than a simple '=' operator, and thus takes longer to run. If
you are not using any wildcard characters in a LIKE operator then you should always replace LIKE
with '='.

name LIKE 'Jim Smith' Matches 'Jim Smith'
name LIKE '_im Smith' Matches things like 'Jim Smith' or 'Tim Smith'
name LIKE '___ Smith' Matches 'Jim Smith' and 'Bob Smith'
name LIKE '% Smith' Matches 'Jim Smith' and 'Bob Smith'
name LIKE '% S%' Matches 'Jim Smith' and 'Bob Smith'
name LIKE 'Bob %' Matches 'Bob Jones' and 'Bob Smith'
name LIKE '%' Matches anything not null

Page 53 of 181Database System Notes V3.2

31/08/2005

Logical Operators and Aggregation
Contents

Logical Operators
AND
OR
NOT
Precedence
Parenthesis

DISTINCT
ORDER BY
IN
Aggregate Functions

AVERAGE
SUM
MAX
MIN
COUNT
COUNT DISTINCT

GROUP BY aggregation
HAVING

Logical Operators
In the previous section we saw how a single rule could be added to a query using a WHERE clause.
While this is useful, usually more than a single rule is required to produce the correct result. To
support multiple rules we need to make use of NOT, AND, OR and parentheses.

AND

The basic way of supporting multiple rules in a single query is by making use of AND. AND
provides a way of connecting two rules together such that ALL the rules must be true before the row
is shown. Lets make use again of the CAR table:

Consider the case where a police eye witness spots a car driving away from a crime. The witness
reports that the car was BLUE and had the character '5' somewhere in the REGNO field. Taking
these rules seperately...

SELECT regno from CAR
WHERE colour = 'BLUE';

REGNO MAKE COLOUR PRICE OWNER
F611 AAA FORD RED 12000 Jim Smith
J111 BBB SKODA BLUE 11000 Jim Smith
A155 BDE MERCEDES BLUE 22000 Bob Smith
K555 GHT FIAT GREEN 6000 Bob Jones
SC04 BFE SMART BLUE 13000

Page 54 of 181Database System Notes V3.2

31/08/2005

SELECT regno from CAR
WHERE regno LIKE '%5%'

We are looking for a REGNO in common to both these results, which means the car we are looking
for is 'A155 BDE'. Rather than doing this ourselves we want the computer to identify the right car in
a single query. The two rules in question are linked together with an AND.

SELECT regno from CAR
WHERE colour = 'BLUE' AND regno LIKE '%5%'
;

Remember that the layout of the SQL is independent of spaces and newlines, so this query is
identical to:

SELECT regno
FROM CAR
WHERE colour = 'BLUE'
AND regno LIKE '%5%'
;

You can link as many rules together as you like. So for instance if the witness said that the car was
BLUE, had a 5 in the registration number, and that someone said the car was owned by Bob, we
could write a query:

SELECT regno
FROM CAR
WHERE colour = 'BLUE'
AND regno LIKE '%5%'
AND owner LIKE 'Bob %'
;

OR

AND allows us to link rules together such that all rules must be true to see that row. Think of AND
as 'As well as'. Sometimes we want to say 'or that' or 'either' rather than 'As well as'. To do this we
use OR. For instance, lets say that the police witness said that the car colour was either RED or
BLUE, and they were not sure which. If you said:

WHERE colour = 'RED' AND colour = 'BLUE'

REGNO
J111 BBB
A155 BDE
SC04 BFE

REGNO
A155 BDE
K555 GHT

REGNO
A155 BDE

Page 55 of 181Database System Notes V3.2

31/08/2005

then no rows would be produced, as you are saying you want rows where the colour is both RED and
BLUE at the same time (RED as well as BLUE). What we need is either RED OR BLUE.

SELECT REGNO,COLOUR from CAR
WHERE colour = 'RED'
OR colour = 'BLUE';

NOT

The NOT operator does the opposite of whatever comparison is being done. NOT is not frequently
needed, as there is usually an opposite operator already. For instance, if you wanted the opposite of:

WHERE colour = 'RED'

You could say

WHERE colour != 'RED'

Using NOT you could also say

WHERE NOT colour = 'RED'

While not particularly useful in these simple examples, NOT comes into its own once you start to
use parentheses.

Precedence

AND, OR, and NOT become more complex to understand when you mix them together in a single
query. The problem is that the rules are combined together, not in the order you write them, but in
the order of their precedence. This states that NOT is done first, then AND, and finally OR. This can
make a BIG difference to your queries!

Consider the case of the police witness. Lets say that the car being looked for had a 5 in the
registration number, and was either RED or BLUE.

SELECT REGNO,COLOUR from CAR
WHERE colour = 'RED' -- 1
OR colour = 'BLUE' -- 2
AND regno LIKE '%5%' -- 3
;

In this query, rule 3 and rule 2 and ANDed together first, as they have a higher precedent. Only then

REGNO COLOUR
F611 AAA RED
J111 BBB BLUE
A155 BDE BLUE
SC04 BFE BLUE

REGNO COLOUR
F611 AAA RED
A155 BDE BLUE

Page 56 of 181Database System Notes V3.2

31/08/2005

is rule 1 ORed in. Thus this query says "The car is BLUE with a 5 in the regno" OR "the car is
RED". What was wanted was to have rules 1 and 2 done first, and then 3, so that the query says "The
car is either RED or BLUE" AND "the car had a 5 in the regno". To do this we need to use
parenthesis.

Parenthesis

Parenthesis, or brackets, are used to instruct the database which rules should be done first. The
database uses a simple ruleset to understand brackets. If you have any brackets, then the rule in the
brackets is done first. If you have brackets within brackets, then the inner brackets are done first. In
the example above, the right query can be generated as:

SELECT REGNO,COLOUR from CAR
WHERE (colour = 'RED'
OR colour = 'BLUE')
AND regno LIKE '%5%'
;

The following queries are all identical in function to the above query...

SELECT REGNO,COLOUR from CAR
WHERE (colour = 'RED' OR colour = 'BLUE')
AND regno LIKE '%5%';

SELECT REGNO,COLOUR from CAR
WHERE ((colour = 'RED' OR colour = 'BLUE')
AND regno LIKE '%5%');

Do not use brackets where they are not needed, as it makes the query harder for users to understand
whats going on.

DISTINCT
Lets say you want a list of all the colours of cars in the database. The COLOUR field of CAR gives
you this, and thus:

SELECT colour FROM car;

This result was not the ideal one wanted. BLUE for some reason appears 3 times. It does this
because BLUE appears 3 times in the original data. Sometimes this duplication is what is wanted,
other times we want only to see the colours appearing once. To tell the database to show the rows
only once, you can use the keyword DISTINCT. This appears immediately after the word SELECT.

REGNO COLOUR
A155 BDE BLUE

COLOUR
RED
BLUE
BLUE
GREEN
BLUE

Page 57 of 181Database System Notes V3.2

31/08/2005

DISTINCT effectively means that all rows which appear must be unique, and any duplicate rows
will be deleted.

SELECT DISTINCT colour FROM car;

ORDER BY
When a query is executed the results are displayed in an almost random order. The order is
dependent on how the database management system was written. This is fine usually, but sometimes
giving the data out in a particular order would make the data must more useful. There is a special
clause, ORDER BY, which can be added to the end of a query to give the data a particular order.

SELECT make FROM car;

To order alphabetically (which in SQL is known as ascending or ASC) you can use ORDER BY or
ORDER BY ASC.

SELECT make FROM car
ORDER BY make;

This is identical to

SELECT make FROM car
ORDER BY make ASC;

To order things in the reverse ordering, you can use ORDER BY DESC.

SELECT make FROM car
ORDER BY make DESC;

COLOUR
BLUE
GREEN
RED

MAKE
FORD
SKODA
MERCEDES
FIAT
SMART

MAKE
FIAT
FORD
MERCEDES
SKODA
SMART

Page 58 of 181Database System Notes V3.2

31/08/2005

For complex orderings involving more than one column, you can specify multiple columns in the
ORDER BY statement, simply by separating each column name with a comma. Thus a query to sort
cars by colour and then make would look like:

SELECT make,colour FROM car
ORDER BY colour,make;

IN
IN (list of values) determines whether a specified value is in a set of one or more listed values.

List the registration numbers of cars which are either SKODA or SMART

SELECT regno,make
FROM car
WHERE make = 'SKODA' or make='SMART'
;

This can be rewritten using IN.

SELECT regno,make
FROM car
WHERE make IN ('SKODA','SMART')
;

A good way to think of IN is to consider it as "is one of the following".

Aggregate Functions
Operators exist in SQL to give results based on the statistics of a group of values stored in the

MAKE
SMART
SKODA
MERCEDES
FORD
FIAT

MAKE COLOUR
SKODA BLUE
SMART BLUE
MERCEDES BLUE
FIAT GREEN
FORD RED

REGNO MAKE
J111 BBB SKODA
SC04 BFE SMART

Page 59 of 181Database System Notes V3.2

31/08/2005

database. Such operators include "what is the maximum number" and "what is the average". These
functions are called SET or AGGREGATE functions.

AVERAGE

To calculate the average of a column you use the AVG function.

SELECT price FROM car;

SELECT avg(price) FROM car;

SUM

To calculate the SUM of all values in a column you use the SUM function.

SELECT sum(price) FROM car;

MAX

To calculate the maximum or biggest value present in a particular column you can use the MAX
function.

SELECT max(price) FROM car;

MIN

To calculate the minimum or smallest value present in a particular column you can use the MIN
function.

PRICE
12000
11000
22000
6000
13000

avg(price)
12800

sum(price)
64000

sum(price)
22000

Page 60 of 181Database System Notes V3.2

31/08/2005

SELECT min(price) FROM car;

COUNT

To work out how many rows are in a particular query result you can use the COUNT function.

Using "count(column)" counts how many rows exist in the answer where that column is NOT
NULL. Using "count(*)" counts how many rows exist independent of NULL values.

SELECT count(price) FROM car;

In this case, the following SQL produces the same answer.

SELECT count(*) FROM car;

COUNT DISTINCT

Sometimes you do not want to count how many rows are in a particular column, but how many
different values are stored in a column. There is a special variation of count which allows you to do
that, known as COUNT DISTINCT. Its syntax is a little unusual...

SELECT count(colour) from car;

SELECT count(DISTINCT colour) from car;

GROUP BY aggregation
The aggregate functions are excellent when all you want is a single number answer. Frequently what
is needed is statistical analysis in groups. For instance, what is the maximum cost of a car given its
colour. Here we are wanting two columns, one the car colour, and the second column the highest
cost. Intuitively one might think:

SELECT colour,max(price)
FROM car
;

If you were to run this query it would produce a "group by" error.

sum(price)
6000

sum(price)
5

sum(price)
5

sum(price)
3

Page 61 of 181Database System Notes V3.2

31/08/2005

Instead, what you have to do is consider all aggregate functions in your query, and over which
columns they are going to be grouped. In this case we are grouping on colour, and want the
maximum price within each "colour" group. To tell the computer this we use GROUP BY.

SELECT colour,price
FROM car
;

SELECT colour,max(price)
FROM car
GROUP BY colour
;

If you are ever confused by what to put in the GROUP BY, then here is a simple rule which is 99%
accurate... If you have a SELECT line with aggregate functions, then you need a GROUP BY listing
all the column names from the SELECT line which are not used by the functions. In this example
"price" and "colour" are columns from SELECT, but as "price" is used in MAX, only "colour" needs
to go into the GROUP BY statement.

HAVING
One annoying feature of SQL is that aggregate functions are executed at almost the last stage of the
query process. This makes writing queries like "Which owners own more than 1 car" quite complex.
Ideally we would like to write:

SELECT owner from car where count(owner) > 1;

The problem is that this does not work! Aggregate functions cannot appear in a WHERE clause, so
this query is illegal... To get around this you can have the HAVING clause. HAVING works in an
identical way to WHERE, except that it runs very late in the process and allows aggregate functions.
It is also VERY expensive for the database to use, so do not use it until it is absolutely essential.

Our query can now be rewritten thus:

SELECT owner,count(regno)
FROM car
GROUP BY owner
HAVING count(regno)>1;

COLOUR PRICE
RED 12000
BLUE 11000
BLUE 22000
GREEN 6000
BLUE 13000

COLOUR max(PRICE)
RED 12000
BLUE 22000
GREEN 6000

Page 62 of 181Database System Notes V3.2

31/08/2005

This query also shows how many cars the owner owns. You do not have to have the function in the
HAVING on the SELECT line. The following also works:

SELECT owner
FROM car
GROUP BY owner
HAVING count(regno)>1;

If you remember count(*) counts how many rows there are in the answer. With a GROUP BY, it
counts how many rows are in each group. The difference between a count with * or with a column
name is that using a column name makes the count ignore NULL entries in that column, whereas
with * NULL entries are counted too. In our example, REGNO is never NULL, so the query is also
identical to:

SELECT owner
FROM car
GROUP BY owner
HAVING count(*)>1;

Page 63 of 181Database System Notes V3.2

31/08/2005

JOINs and VIEWs
Contents

Multiple source tables
JOIN condition
Traditional JOIN
Modern JOIN
OUTER JOIN
FULL OUTER JOIN

Naming
Aliases
Self Joins
VIEWs

DROP View

Multiple source tables
Sometimes you will need to write a query which uses more than a single table. This is perfectly
acceptable in SQL, but needs a little care... It is very easy to produce multi-table queries which
produce mostly rubbush.

The basic concept for producing multi-table queries is that all the tables you need must be listed in
the FROM clause of the query. For example, lets try to write a query which lists the owner name,
date of birth, and the registration number, for each car in the database. REGNO is in CAR, but DOB
is in DRIVER. Therefore both tables are needed. The basic query looks like:

SELECT name,dob,regno
FROM car,driver
;

The order in which the tables appear in the FROM line are irrelevent. However, this query does not
produce the right answer. The reason for this is that the DBMS does not understand how to relate
one table to the other.

JOIN condition

In order to usefully join multiple tables together we need to explain to the database how they are
joined. The FROM clause takes all rows in all the tables listed, and forms a new table which contains
all combinations of the original rows. Most of the time this results in rubbish. Look at this example.

Page 64 of 181Database System Notes V3.2

31/08/2005

SELECT *
FROM car
;

SELECT *
FROM driver
;

SELECT *
FROM car,driver
;

In our query, we are only interested in table combinations which obey the rules of the FOREIGN
KEY relationship which joins these two tables. If you remember, the PRIMARY KEY of DRIVER
(NAME) was copied into CAR as a FOREIGN KEY (named OWNER). Thus this FROM generated
table needs to be filtered so that only the rows where NAME = OWNER appear. Note that this
FROM generated table containing all the combinations of the listed tables is known as the cartesian

REGNO MAKE COLOUR PRICE OWNER
F611 AAA FORD RED 12000 Jim Smith
J111 BBB SKODA BLUE 11000 Jim Smith
A155 BDE MERCEDES BLUE 22000 Bob Smith
K555 GHT FIAT GREEN 6000 Bob Jones
SC04 BFE SMART BLUE 13000

NAME DOB
Jim Smith 11 Jan 1980
Bob Smith 23 Mar 1981
Bob Jones 3 Dec 1986

REGNO MAKE COLOUR PRICE OWNER NAME DOB
F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980
J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980
A155 BDE MERCEDES BLUE 22000 Bob Smith Jim Smith 11 Jan 1980
K555 GHT FIAT GREEN 6000 Bob Jones Jim Smith 11 Jan 1980
SC04 BFE SMART BLUE 13000 Jim Smith 11 Jan 1980
F611 AAA FORD RED 12000 Jim Smith Bob Smith 23 Mar 1981
J111 BBB SKODA BLUE 11000 Jim Smith Bob Smith 23 Mar 1981
A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981
K555 GHT FIAT GREEN 6000 Bob Jones Bob Smith 23 Mar 1981
SC04 BFE SMART BLUE 13000 Bob Smith 23 Mar 1981
F611 AAA FORD RED 12000 Jim Smith Bob Jones 3 Dec 1986
J111 BBB SKODA BLUE 11000 Jim Smith Bob Jones 3 Dec 1986
A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Jones 3 Dec 1986
K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986
SC04 BFE SMART BLUE 13000 Bob Jones 3 Dec 1986

Page 65 of 181Database System Notes V3.2

31/08/2005

cross product. We will return to the subject of the cross product in the relational algebra chapter.

Now, in order to get our query working properly, we put in the JOIN condition NAME = OWNER.
There are two basic ways to do this, which we will call traditional and modern. Both ways are
usually referred to as an INNER JOIN.

Traditional JOIN

To put the join condition NAME = OWNER into a query using the traditional approach is simply to
list it in the WHERE clause as a rule. So...

SELECT *
FROM car,driver
WHERE owner = name
;

Modern JOIN

To put the join condition NAME = OWNER into a query using the modern approach, you rewrite the
FROM line to say:

FROM table1 JOIN table2 ON (rules)

So in our example:

SELECT *
FROM car JOIN driver ON (owner = name)
;

OUTER JOIN

You might have noticed a result in the previous query (when there were no join conditions) where
there was a NULL in the OWNER field. This is for a car with no current owner. Once the join
condition was inserted into the query the rows with NULL owners were filtered out. This is usually
exactly what is desired, but sometimes we want the join condition to be obeyed if the fields are not
NULL, and the rules to be broken when there is a NULL. Such JOINs are called OUTER JOINS. In
the modern JOIN syntax you simply insert either the word LEFT or the word RIGHT in front of the
word JOIN.

REGNO MAKE COLOUR PRICE OWNER NAME DOB
F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980
J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980
A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981
K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

REGNO MAKE COLOUR PRICE OWNER NAME DOB
F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980
J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980
A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981
K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

Page 66 of 181Database System Notes V3.2

31/08/2005

To decide if the right word is LEFT of RIGHT, you have to consider where the NULL values will
be. In our example query, the NULL value is in the OWNER field, which belongs to the CAR table.
The current JOIN is:

FROM car JOIN driver on (owner = name)
 ^ ^ ^
 | | |
 | | +-------- To the right of JOIN
 | +--------------- The JOIN statement
 +------------------------- To the left of JOIN

As the CAR table has the NULL values, and CAR appears to the left of the word JOIN in the query,
the right keyword to use is LEFT JOIN. The query becomes:

SELECT *
FROM car LEFT JOIN driver ON (owner = name)
;

The OUTER JOIN fills in the missing data (for the things which do not satisfy the rules) with
NULLs. Note that if you swap CAR and DRIVER around in the JOIN statement you can write it as a
RIGHT JOIN just as easily...

SELECT *
FROM driver RIGHT JOIN car ON (owner = name)
;

The order of the rules in ON have no significance in deciding what is right and what is left.

FULL OUTER JOIN

First, assume that we have added a new row to DRIVER, so that it now reads as:

Now, David Davis does not own a car, and thus never appears in a normal inner JOIN. In an outer
join, we can have:

SELECT *
FROM car LEFT JOIN driver ON (owner = name)
;

REGNO MAKE COLOUR PRICE OWNER NAME DOB
F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980
J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980
A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981
K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986
SC04 BFE SMART BLUE 13000

NAME DOB
Jim Smith 11 Jan 1980
Bob Smith 23 Mar 1981
Bob Jones 3 Dec 1986
David Davis 1 Oct 1975

Page 67 of 181Database System Notes V3.2

31/08/2005

SELECT *
FROM car RIGHT JOIN driver ON (owner = name)
;

In some relatively unusual queries, it might be useful if we see all the rows which obey the join
condition, followed by the rows left over from each of the tables involved in the join. This is called a
FULL OUTER JOIN and is written in SQL as FULL JOIN.

SELECT *
FROM car FULL JOIN driver ON (owner = name)
;

Naming
In some complex queries the DBMS may not be able to identify what table an attribute belongs to.
For instance, joining two tables ALPHA and BRAVO, where both tables have a column called
NAME. Running the following:

SELECT name from ALPHA,BRAVO

would produce an error. The problem is when you say "name" is it the one in ALPHA or the one in
BRAVO? Instead you have to make the query more explicit.

What you are allowed to do is in front of a column name you can say with table that column belongs
to. If you wanted to say "name" in ALPHA, you could say alpha.name. Now it is clear what table the

REGNO MAKE COLOUR PRICE OWNER NAME DOB
F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980
J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980
A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981
K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986
SC04 BFE SMART BLUE 13000

REGNO MAKE COLOUR PRICE OWNER NAME DOB
F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980
J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980
A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981
K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

David Davis 1 Oct 1975

REGNO MAKE COLOUR PRICE OWNER NAME DOB
F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980
J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980
A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981
K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986
SC04 BFE SMART BLUE 13000

David Davis 1 Oct 1975

Page 68 of 181Database System Notes V3.2

31/08/2005

column belongs to, and the query will work:

SELECT alpha.name from ALPHA,BRAVO

Aliases
Sometimes you can be dealing with large table names, and finding you have to put the table name in
front of many of the attribute names. This can be a lot of typing. SQL allows you to pretend that a
table is called something else for the duration of your query. This is called aliasing. So instead of

SELECT car.owner from car

you can write

SELECT c.owner FROM car c

In this way aliases provide a shorthand way to refer to tables. In a more complex example:

SELECT c.regno,c.owner,d.dob
FROM car c JOIN driver d ON (c.owner = d.name)
;

Remember you only have to use aliases if you want to, and decorate attributes with the table names
when the computer cannot work out which table attribute you are talking about.

Self Joins
Self-joins, or Equijoins, are where you want the query to use the same table more than once, but each
time you use it for a different purpose.

Consider the question "Who drives a car the same colour as Bob Smith"?

SELECT colour FROM car WHERE owner = 'Bob Smith';

SELECT owner FROM car
WHERE colour = 'BLUE'
AND owner != 'Bob Smith'
AND owner NOT NULL

To run this query, we need to use CAR twice. First to find the colour, and then to find the other
owners. Thus CAR is used for two different purposes. To combine these queries together, we need to
use CAR twice. To make this work, we need to use table aliases to make CAR appear to be two
different tables. After that, its easy!

SELECT other.owner
FROM car bobsmith, car other
WHERE bobsmith.colour = other.colour -- join on the colour

colour
BLUE

owner
Jim Smith

Page 69 of 181Database System Notes V3.2

31/08/2005

AND bobsmith.owner = 'Bob Smith' -- In bobsmith look only for Bob Smith
AND bobsmith.owner != other.owner -- OTHER cannot be Bob Smith
AND other.owner NOT NULL -- Exclude cars without owners

VIEWs
When writing queries, the query can get longer and longer. In addition, sometimes you find that a
single query uses the same rules in two different parts of the query. In programming languages you
would move the duplicated code into some sort of library of subroutines. In SQL, the idea of a
subroutine is called a VIEW.

A VIEW can be created in the DBMS, and each view represents a particular SQL query. Once the
view is created, the query it represents is hidden from the user, and instead the view appears to be
just another table. The contents of the VIEW always remains identical to the result of running the
query which the view represents.

Lets say you want a query to tell you how many drivers there are and how many cars exist in the
database. You could run two different queries:

SELECT count(*) from DRIVER;
SELECT count(*) from CAR;

Instead, lets put each of them in a VIEW

CREATE VIEW count1 (total) AS SELECT count(*) from DRIVER;
CREATE VIEW count2 (total) AS SELECT count(*) from CAR;

SELECT * from count1;

SELECT * from count2;

SELECT count1.total,count2.total from count1,count2;

DROP View

Once you are finished with your VIEW, you can delete it. The command to do this is DROP VIEW
viewname. Continuing our count1 and count2 example, to delete the count1 view you would type:

DROP VIEW count1;

owner
Jim Smith

total
3

total
5

total total
3 5

Page 70 of 181Database System Notes V3.2

31/08/2005

Subqueries and Schema
Contents

Subqueries
Simple Example
ANY and ALL
IN and NOT IN for subqueries
EXISTS
UNION

Changing Data
INSERT
DELETE
UPDATE
View Manipulation

VIEW update, insert and delete
Controlling Schema

CREATE TABLE
DROP TABLE
ALTER TABLE

Order of Evaluation

Subqueries
One SELECT statement can be used inside another, allowing the result of executing one query to be
used in the WHERE rules of the other SELECT statement. Where one SELECT statement appears
within another SELECT statement's WHERE clause it is known as a SUBQUERY.

One limitation of subqueries is that it can only return one attribute. This means that the subquery can
only have one attribute in its SELECT line. If you supply more than one attribute the system will
report an error.

Subqueries are generally used in situations where one might normally use a self join or a view.
Subqueries tend to be much easier to understand.

Simple Example

Who in the database is older than Jim Smith?

Page 71 of 181Database System Notes V3.2

31/08/2005

SELECT dob FROM driver WHERE name = 'Jim Smith'

SELECT name FROM driver WHERE dob > '11 Jan 1980';

SELECT name
FROM driver
WHERE dob > (SELECT dob FROM driver WHERE name = 'Jim Smith')

This subquery works well, and is simple to understand, but you must take care that the subquery
returns only 1 row. If there were two people called Jim Smith, the query would return two different
dates of birth, and this would break the query. To get around this problem, we use ANY or ALL.

ANY and ALL

This allows us to handle subqueries which return multiple rows. You still must only have a subquery
which has only a single column. If you put ANY in front of a query, then the rule you provide must
be true for at least 1 of the rows returned. If you put ALL in front of the subquery, then your rule
must be true for all the rows returned.

Question: What cars are the same colour as a car owned by Jim Smith?

Jim Smith owns two cars, and their colours are RED and BLUE. We want to know what cars are
EITHER RED or BLUE...

SELECT regno FROM car
WHERE colour = ANY (SELECT colour FROM car WHERE owner = 'Jim Smith')
;

Question: List the drivers younger than all the people who own a blue car.

This is really looking for the age of people who own a BLUE car (2 people) and listing drivers who
are younger than both of these people.

SELECT name,dob
FROM driver
WHERE dob < ALL (
 SELECT dob
 FROM car join driver on (owner=name)
 WHERE colour = 'BLUE'
)
;

IN and NOT IN for subqueries

Just like IN could be used with something like ('BLUE','BLACK'), a subquery returns a similar
construct which can similarly be accessed using IN

dob
11 Jan 1980

name
Bob Smith
Bob Jones

Page 72 of 181Database System Notes V3.2

31/08/2005

Question: Which cars the same colour as one of Jim Smith's cars?

SELECT regno FROM car
WHERE colour IN (SELECT colour FROM car WHERE owner = 'Jim Smith')
;

Question: Which cars do not have the same colour as one of Jim Smith's cars?

SELECT regno FROM car
WHERE colour NOT IN (SELECT colour FROM car WHERE owner = 'Jim Smith')
;

EXISTS

In almost all cases, when a question involves uniqueness then you can do it with a subquery and
EXISTS or NOT EXISTS. The EXISTS operator is a simple test, which is TRUE if the subquery
returns at least 1 row, and FALSE if it return 0 rows. NOT EXISTS does the opposite.

Question: List the colours which are only used once in the database.

SELECT colour
FROM car a
WHERE exists (
 select colour -- does not matter what is selected
 from car b -- As we use CAR twice, call this one b
 where a.colour = b.colour -- CAR rows with the same colour as a
 and a.regno != b.regno -- but a car different to the one in a
);

Remember that the rules are processed for each row of a. So the query looks at row 1 of a, runs the
subquery, and decides if the colour is unique. It then moves to row 2 of a and reruns the subquery.

UNION

Sometimes it is desirable to merge the results of two queries together to form a single output table.
This is known as UNION. UNION only works if each query in the statement has the same number of
columns, and each of the corresponding columns are of the same type.

Question: List all the drivers in the DRIVER table, and show how many cars each of them own. If a
driver owns no cars, the total should be 0. We will assume that David Davis has been added to the
DRIVER table, but that he owns no cars.

SELECT name,count(*)
FROM driver JOIN car on (name = owner)

This does not show David Davis, but we could write a query to find people who own no cars using
NOT IN and a subquery.

SELECT name,0

NAME count(*)
Jim Smith 2
Bob Smith 1
Bob Jones 1

Page 73 of 181Database System Notes V3.2

31/08/2005

FROM driver
WHERE name not in (select owner from car);

Now, we can merge these two results together using UNION, and thus:

SELECT name,count(*)
FROM driver JOIN car on (name = owner)
UNION
SELECT name,0
FROM driver
WHERE name not in (select owner from car)

Changing Data
So far we have just looked at SELECT but we need to be able to do other operations as follows:

INSERT - which writes new rows into a database
DELETE - which deletes rows from a database
UPDATE - which changes values in existing rows

INSERT

The INSERT command allows you to put new rows into a table.

INSERT INTO table_name
 [(column_list)] VALUES (value_list)

The column_list lists columns to be assigned values. It can be omitted if every column is to be
assigned a value. The value_list is a set of literal values giving the value for each column in
column_list or CREATE TABLE order.

insert into driver
 values ('Jessie James','31 Nov 1892');
insert into driver (name,dob)
 values ('John Johnstone','1 Aug 1996');

Usually you do not have to specify the columns in the insert statement, but doing so is useful in case
someone changes the table at some point in the future. By mentioning the column names you are
certain that the values specified are going into the correct columns.

DELETE

The DELETE command allows you to remove rows from a table.

name 0
David Davis 0

NAME count(*)
Jim Smith 2
Bob Smith 1
Bob Jones 1
David Davis 0

Page 74 of 181Database System Notes V3.2

31/08/2005

 DELETE FROM table_name [WHERE condition];

the rows of table_name which satify the condition are deleted.

Example:

DELETE FROM car -- Delete all rows from CAR
;

DELETE from car
WHERE owner is null -- Delete any row where a car has no owner
;

UPDATE

UPDATE allows you to write queries which change data already in a table. It cannot add more rows
or take rows away.

UPDATE table_name
 SET column_name = expression,{column_name=expression}
 [WHERE condition]

For example, lets set all BLUE cars to GREEN.

UPDATE car SET colour = 'GREEN'
WHERE colour = 'BLUE';

This next example shows how the update calculation can be an expression. Lets add VAT of 17.5%
to all prices in the CAR table. This is equivalent to multiplying the car price by 1.175.

UPDATE car SET price = price * 1.175

View Manipulation

When is the contents of a view calculated? The process of the DBMS calculating the contents of a
view is called 'materialising the view'. In theory this could be:

When it is defined or
when it is accessed

If it is the former then subsequent inserts, deletes and updates would not be visible. If the latter then
changes will be seen.

Some systems allow you to chose when views are materialised. Most do not, and views are
materialised whenever they are accessed, thus all changes to the tables on which the view query is
based can instantly be seen.

VIEW update, insert and delete

Can we change the data viewed through a view?

Yes, provided the primary key of all the base tables which make up the view are present in the
view.

Page 75 of 181Database System Notes V3.2

31/08/2005

Figure : VIEW which can be updated

The following view cannot be changed because we have no means of knowing which row of B
to modify

Figure : VIEW which cannot be updated

Controlling Schema
Up to this point we have assumed that the database has already been created. However, someome

Page 76 of 181Database System Notes V3.2

31/08/2005

must be able to create the schema to allow table structures to be defined. In the ER diagram design
phase, the process will take you from written specifications to sets of relations, including foreign key
definitions. At that point the relations have to be rewritten into schema creation queries.

CREATE TABLE

CREATE TABLE allows the user to create the table schemas. It has a relatively simple structure,
consisting of the column names and the type of each column. We have not really mentioned column
types, but there are quite a few different types in an DBMS. The important ones are:

INTEGER - A column to hold numbers. Numbers with decimal points are not permitted.
Examples: 5, 6, 10006.
REAL - A column to hold numbers which have decimal points. Examples could be pounds and
pence. Examples 5.6, 1000.35567.
DECIMAL - A column to hold numbers which can have decimal points. It is used as
DECIMAL(n) or DECIMAL(n,m), where n is the size of the number allowed before the
decimal point, and m is the size allowed after the decimal point. If you do not specify m, it is
assumed to be 0.
VARCHAR - ASCII characters with a length ranging from 0 characters up to some limit. It is
usually used as VARCHAR(n), where n is the maximum number of characters which can be
stored. Examples include 'Hello' and 'surprise birthday'.
CHAR - ASCII characters with a fixed length. It is usually used as CHAR(n), where n is the
fixed length of the string. If you try to write a string into a CHAR which is shorter than n,
spaces are added to the end of your string. For example, with CHAR(5), storing 'Hia' results in
'Hia '.
DATE - A column which holds a day/month/year date. Examples include '1 Jan 2003' and '31
Dec 1885'.

The actual syntax of the statement is:

CREATE TABLE tablename (
 colname type Optionaladditionalinfo
 ,colname type Optionaladditionalinfo
 ,colname type Optionaladditionalinfo
 ,optionaladditionalinfo
);

At the end of each column definition you can have some additional info. This could be range rules or
key information. Common ones to use include

REFERENCES - This field is a foreign key which refers to the specified table and key. An
example could be
A INTEGER REFERENCES B(C)
which would indicate that column A (an integer) is a foreign key which refers to a table called
B, and relates to column C in B (C should be the primary key in a properly designed database).
PRIMARY KEY - This column is the primary key.
NOT NULL - This column must have a value.

At the end of the definition you can have some other types of optional additional information. There
is a significant number of possibilities here, but the main ones include:

PRIMARY KEY (column1,column2,...) - If the table is has a composite primary key (more
than 1 column makes up the key) then you must define the key in this way at the end of the
definition.
FOREIGN KEY (column1,column2,...) REFERENCES othertable - If the table has a

Page 77 of 181Database System Notes V3.2

31/08/2005

relationship with another table which has a composite key, then the columns in this table
which form the foreign keys must be listed using this syntax.

Example

As some examples, lets defined the DRIVER and CAR tables.

CREATE TABLE driver (
 name varchar(30) PRIMARY KEY
 ,dob DATE NOT NULL
);

CREATE TABLE car (
 regno VARCHAR(8) PRIMARY KEY
 ,make VARCHAR(20)
 ,colour VARCHAR(30)
 ,price DECIMAL(8,2)
 ,owner VARCHAR(30) REFERENCES driver(name)
);

Or, using the additional information aspects of the syntax, the following statements create the same
table structures.

CREATE TABLE driver (
 name varchar(30)
 ,dob DATE NOT NULL
 ,PRIMARY KEY (name)
);

CREATE TABLE car (
 regno VARCHAR(8)
 ,make VARCHAR(20)
 ,colour VARCHAR(30)
 ,price DECIMAL(8,2)
 ,owner VARCHAR(30)
 ,PRIMARY KEY(regno)
 ,FOREIGN KEY(owner) REFERENCES driver
);

DROP TABLE

Eventually there may come a time when you want to remove a table. The basic syntax is:

DROP TABLE tablename

The only difficulty in dropping tables is that you cannot drop a table if another table refers to it via a
foreign key relationship. This would break the referential integrity rules. Thus in our example we can
drop CAR and then DRIVER, but we cannot drop DRIVER first.

DROP TABLE car;
DROP TABLE driver;

ALTER TABLE

Most database management systems allow you to alter the definition of a table after it has been
constructed, using the ALTER TABLE command. There are many variants to this, and far too much
to discuss in this introduction. One simple example would be if there was a need to add a column to
DRIVER to indicate the driver's address. This could be done by:

Page 78 of 181Database System Notes V3.2

31/08/2005

ALTER TABLE driver ADD address varchar(50);

Order of Evaluation
In summary, consider the following information, which depicts the various options of the SELECT
statement, and the approximate order in which each statement is evaluated:

 SELECT [distinct] column_names 7,6 eliminate unwanted data
 FROM table_list 1 Cartesian Product
[WHERE conditions] 2 Filter rows
[GROUP BY colum_list 3 Group Rows
 [HAVING conditions]] 4 eliminate unwanted groups
[ORDER BY column_list [DESC]] 5 Sort rows

Page 79 of 181Database System Notes V3.2

31/08/2005

Chapter 4 - Normalisation
Normalisation techniques for relations and raw data examples, covering unnormalised forms through
to 5th Normal Form.

Normalisation 0NF-3NF
Normalisation BCNF and Example

Page 80 of 181Database System Notes V3.2

31/08/2005

Normalisation
Contents

What is normalisation?
Integrity Constraints
Understanding Data

Student #2 - Flattened Table
First Normal Form
Flatten table and Extend Primary Key

Insertion anomaly:
Update anomaly
Deletion anomaly

Decomposing the relation
Second Normal Form
Third Normal Form
Summary: 1NF
Summary: 2NF
Summary: 3NF

What is normalisation?
Normalisation is the process of taking data from a problem and reducing it to a set of relations while
ensuring data integrity and eliminating data redundancy

Data integrity - all of the data in the database are consistent, and satisfy all integrity
constraints.
Data redundancy – if data in the database can be found in two different locations (direct
redundancy) or if data can be calculated from other data items (indirect redundancy) then the
data is said to contain redundancy.

Data should only be stored once and avoid storing data that can be calculated from other data already
held in the database. During the process of normalisation redundancy must be removed, but not at
the expense of breaking data integrity rules.

If redundancy exists in the database then problems can arise when the database is in normal
operation:

When data is inserted the data must be duplicated correctly in all places where there is
redundancy. For instance, if two tables exist for in a database, and both tables contain the
employee name, then creating a new employee entry requires that both tables be updated with
the employee name.
When data is modified in the database, if the data being changed has redundancy, then all
versions of the redundant data must be updated simultaneously. So in the employee example a
change to the employee name must happen in both tables simultaneously.

The removal of redundancy helps to prevent insertion, deletion, and update errors, since the data is
only available in one attribute of one table in the database.

The data in the database can be considered to be in one of a number of `normal forms'. Basically the

Page 81 of 181Database System Notes V3.2

31/08/2005

normal form of the data indicates how much redundancy is in that data. The normal forms have a
strict ordering:

1. 1st Normal Form

2. 2nd Normal Form
3. 3rd Normal Form
4. BCNF

There are other normal forms, such as 4th and 5th normal forms. They are rarely utilised in system
design and are not considered further here.

To be in a particular form requires that the data meets the criteria to also be in all normal forms
before that form. Thus to be in 2nd normal form the data must meet the criteria for both 2nd normal
form and 1st normal form. The higher the form the more redundancy has been eliminated.

Integrity Constraints
An integrity constraint is a rule that restricts the values that may be present in the database. The
relational data model includes constraints that are used to verify the validity of the data as well as
adding meaningful structure to it:

entity integrity :

The rows (or tuples) in a relation represent entities, and each one must be uniquely identified. Hence
we have the primary key that must have a unique non-null value for each row.

referential integrity :

This constraint involves the foreign keys. Foreign keys tie the relations together, so it is vitally
important that the links are correct. Every foreign key must either be null or its value must be the
actual value of a key in another relation.

Understanding Data
Sometimes the starting point for understanding data is given in the form of relations and functional
dependancies. This would be the case where the starting point in the process was a detailed
specification of the problem. We already know what relations are. Functional dependancies are rules
stating that given a certain set of attributes (the determinant) determines a second set of attributes.

The definition of a functional dependency looks like A->B. In this case B is a single attribute but it
can be as many attributes as required (for instance, X->J,K,L,M). In the functional dependency, the
determinant (the left hand side of the -> sign) can determine the set of attributes on the right hand
side of the -> sign. This basically means that A selects a particular value for B, and that A is unique.
In the second example X is unique and selects a particular set of values for J,K,L, and M. It can also
be said that B is functionally dependent on A. In addition, a particular value of A ALWAYS gives
you a particular value for B, but not vice-versa.

Consider this example:

R(matric_no, firstname, surname, tutor_number, tutor_name)

tutor_number -> tutor_name

Page 82 of 181Database System Notes V3.2

31/08/2005

Here there is a relation R, and a functional dependency that indicates that:

instances of tutor_number are unique in the data
from the data, given a tutor_number, it is always possible to work out the tutor_name.
As an example tutor number 1 may be “Mr Smith”, but tutor number 10 may also be “Mr
Smith”. Given a tutor number of 1, this is ALWAYS “Mr Smith”. However, given the name
“Mr Smith” it is not possible to work out if we are talking about tutor 1 or tutor 10.

There is actually a second functional dependency for this relation, which can be worked out from the
relation itself. As the relation has a primary key, then given this attribute you can determine all the
other attributes in R. This is an implied functional dependency and is not normally listed in the list of
functional dependents.

Extracting understanding

It is possible that the relations and the determinants have not yet been defined for a problem, and
therefore must be calculated from examples of the data. Consider the following Student table.

Student - an unnormalised tablewith repeating groups

The subject/grade pair is repeated for each student. 960145 has 1 pair while 960150 has four.
Repeating groups are placed inside another set of parentheses. From the table the following relation
is generated:

 Student(matric_no, name, date_of_birth, (subject, grade))

The repeating group needs a key in order that the relation can be correctly defined. Looking at the
data one can see that grade repeats within matric_no (for instance, for 960150, the student has 2 D
grades). However, subject never seems to repeat for a single matric_no, and therefore is a candidate
key in the repeating group.

Whenever keys or dependencies are extracted from example data, the information extracted is only
as good as the data sample examined. It could be that another data sample disproves some of the key
selections made or dependencies extracted. What is important however is that the information
extracted during these exercises is correct for the data being examined.

matric_no Name date_of_birth subject grade

960100 Smith, J 14/11/1977
Databases
Soft_Dev
ISDE

C
A
D

960105 White, A 10/05/1975 Soft_Dev
ISDE

B
B

960120 Moore, T 11/03/1970
Databases
Soft_Dev
Workshop

A
B
C

960145 Smith, J 09/01/1972 Databases B

960150 Black, D 21/08/1973

Databases
Soft_Dev
ISDE
Workshop

B
D
C
D

Page 83 of 181Database System Notes V3.2

31/08/2005

Looking at the data itself, we can see that the same name appears more than once in the name
column. The name in conjunction with the date_of_birth seems to be unique, suggesting a functional
dependency of:

 name, date_of_birth -> matric_no

This implies that not only is the matric_no sufficient to uniquely identify a student, the student’s
name combined with the date of birth is also sufficient to uniquely identify a student. It is therefore
possible to have the relation Student written as:

 Student(matric_no, name, date_of_birth, (subject, grade))

As guidance in cases where a variety of keys could be selected one should try to select the relation
with the least number of attributes defined as primary keys.

Flattened Tables

Note that the student table shown above explicitly identifies the repeating group. It is also possible
that the table presented will be what is called a flat table, where the repeating group is not explicitly
shown:

Student #2 - Flattened Table

The table still shows the same data as the previous example, but the format is different. We have
removed the repeating group (which is good) but we have introduced redundancy (which is bad).

Sometimes you will miss spotting the repeating group, so you may produce something like the
following relation for the Student data.

 Student(matric_no, name, date_of_birth, subject, grade)

 matric_no -> name, date_of_birth
 name, date_of_birth -> matric_no

matric_no name date_of_birth Subject grade
960100 Smith, J 14/11/1977 Databases C
960100 Smith, J 14/11/1977 Soft_Dev A
960100 Smith, J 14/11/1977 ISDE D
960105 White, A 10/05/1975 Soft_Dev B
960105 White, A 10/05/1975 ISDE B
960120 Moore, T 11/03/1970 Databases A
960120 Moore, T 11/03/1970 Soft_Dev B
960120 Moore, T 11/03/1970 Workshop C
960145 Smith, J 09/01/1972 Databases B
960150 Black, D 21/08/1973 Databases B
960150 Black, D 21/08/1973 Soft_Dev D
960150 Black, D 21/08/1973 ISDE C
960150 Black, D 21/08/1973 Workshop B

Page 84 of 181Database System Notes V3.2

31/08/2005

This data does not explicitly identify the repeating group, but as you will see the result of the
normalisation process on this relation produces exactly the same relations as the normalisation of the
version that explicitly does have a repeating group.

First Normal Form
First normal form (1NF) deals with the `shape' of the record type
A relation is in 1NF if, and only if, it contains no repeating attributes or groups of attributes.
Example:
The Student table with the repeating group is not in 1NF
It has repeating groups, and it is called an `unnormalised table'.

Relational databases require that each row only has a single value per attribute, and so a repeating
group in a row is not allowed.

To remove the repeating group, one of two things can be done:

either flatten the table and extend the key, or
decompose the relation- leading to First Normal Form

Flatten table and Extend Primary Key
The Student table with the repeating group can be written as:

Student(matric_no, name, date_of_birth, (subject, grade))

If the repeating group was flattened, as in the Student #2 data table, it would look something like:

Student(matric_no, name, date_of_birth, subject, grade)

Although this is an improvement, we still have a problem. matric_no can no longer be the primary
key - it does not have an unique value for each row. So we have to find a new primary key - in this
case it has to be a compound key since no single attribute can uniquely identify a row. The new
primary key is a compound key (matrix_no + subject).

We have now solved the repeating groups problem, but we have created other complications. Every
repetition of the matric_no, name, and data_of_birth is redundant and liable to produce errors.

With the relation in its flattened form, strange anomalies appear in the system. Redundant data is the
main cause of insertion, deletion, and updating anomalies.

Insertion anomaly:

With the primary key including subject, we cannot enter a new student until they have at least one
subject to study. We are not allowed NULLs in the primary key so we must have an entry in both
matric_no and subject before we can create a new record.

This is known as the insertion anomaly. It is difficult to insert new records into the database.
On a practical level, it also means that it is difficult to keep the data up to date.

Update anomaly

Page 85 of 181Database System Notes V3.2

31/08/2005

If the name of a student were changed for example Smith, J. was changed to Green, J. this would
require not one change but many one for every subject that Smith, J. studied.

Deletion anomaly

If all of the records for the `Databases' subject were deleted from the table,we would inadvertently
lose all of the information on the student with matric_no 960145. This would be the same for any
student who was studying only one subject and the subject was deleted. Again this problem arises
from the need to have a compound primary key.

Decomposing the relation
The alternative approach is to split the table into two parts, one for the repeating groups and
one of the non-repeating groups.
the primary key for the original relation is included in both of the new relations

Record

Student

We now have two relations, Student and Record.
Student contains the original non-repeating groups
Record has the original repeating groups and the matric_no

Student(matric_no, name, date_of_birth)
Record(matric_no, subject, grade)

Matric_no remains the key to the Student relation. It cannot be the complete key to the new Record
relation - we end up with a compound primary key consisting of matric_no and subject. The
matric_no is the link between the two tables - it will allow us to find out which subjects a student is

matric_no subject grade
960100 Databases C
960100 Soft_Dev A
960100 ISDE D
960105 Soft_Dev B
960105 ISDE B
...
960150 Workshop B

matric_no name date_of_birth
960100 Smith,J 14/11/1977
960105 White,A 10/05/1975
960120 Moore,T 11/03/1970
960145 Smith,J 09/01/1972
960150 Black,D 21/08/1973

Page 86 of 181Database System Notes V3.2

31/08/2005

studying . So in the Record relation, matric_no is the foreign key.

This method has eliminated some of the anomalies. It does not always do so, it depends on the
example chosen

In this case we no longer have the insertion anomaly
It is now possible to enter new students without knowing the subjects that they will be
studying
They will exist only in the Student table, and will not be entered in the Record table until they
are studying at least one subject.
We have also removed the deletion anomaly
If all of the `databases' subject records are removed, student 960145 still exists in the Student
table.
We have also removed the update anomaly

Student and Record are now in First Normal Form.

Second Normal Form
Second normal form (or 2NF) is a more stringent normal form defined as:

A relation is in 2NF if, and only if, it is in 1NF and every non-key attribute is fully functionally
dependent on the whole key.

Thus the relation is in 1NF with no repeating groups, and all non-key attributes must depend on the
whole key, not just some part of it. Another way of saying this is that there must be no partial key
dependencies (PKDs).

The problems arise when there is a compound key, e.g. the key to the Record relation - matric_no,
subject. In this case it is possible for non-key attributes to depend on only part of the key - i.e. on
only one of the two key attributes. This is what 2NF tries to prevent.

Consider again the Student relation from the flattened Student #2 table:

 Student(matric_no, name, date_of_birth, subject, grade)

There are no repeating groups
The relation is already in 1NF
However, we have a compound primary key - so we must check all of the non-key attributes
against each part of the key to ensure they are functionally dependent on it.
matric_no determines name and date_of_birth, but not grade.
subject together with matric_no determines grade, but not name or date_of_birth.
So there is a problem with potential redundancies

A dependency diagram is used to show how non-key attributes relate to each part or combination of
parts in the primary key.

Page 87 of 181Database System Notes V3.2

31/08/2005

Figure : Dependency Diagram

This relation is not in 2NF
It appears to be two tables squashed into one.
the solution is to split the relation up into its component parts.
separate out all the attributes that are solely dependent on matric_no
put them in a new Student_details relation, with matric_no as the primary key
separate out all the attributes that are solely dependent on subject.
in this case no attributes are solely dependent on subject.
separate out all the attributes that are solely dependent on matric_no + subject
put them into a separate Student relation, keyed on matric_no + subject

Figure : Dependencies after splitting

Interestingly this is the same set of relations as when we recognized that there were repeating terms
in the table and directly removed the repeating terms. It should not really matter what process you
followed when normalizing, as the end result should be similar relations.

Third Normal Form
3NF is an even stricter normal form and removes virtually all the redundant data :

A relation is in 3NF if, and only if, it is in 2NF and there are no transitive functional
dependencies
Transitive functional dependencies arise:
when one non-key attribute is functionally dependent on another non-key attribute:
FD: non-key attribute -> non-key attribute
and when there is redundancy in the database

By definition transitive functional dependency can only occur if there is more than one non-key
field, so we can say that a relation in 2NF with zero or one non-key field must automatically be in
3NF.

All attributes in each relation are fully
functionally dependent upon its

primary key

These relations are now in 2NF

Page 88 of 181Database System Notes V3.2

31/08/2005

address depends on the value in the manager column
every time B Black is listed in the manager column, the address column has the value `32 High
Street'. From this the relation and functional dependency can be implied as:

Project(project_no, manager, address)

 manager -> address
in this case address is transitively dependent on manager. Manager is the determinant - it
determines the value of address. It is transitive functional dependency only if all attributes on
the left of the “->” are not in the key but are all in the relation, and all attributes to the right of
the “->” are not in the key with at least one actually being in the relation.
Data redundancy arises from this
we duplicate address if a manager is in charge of more than one project
causes problems if we had to change the address- have to change several entries, and this
could lead to errors.
The solution is to eliminate transitive functional dependency by splitting the table
create two relations - one with the transitive dependency in it, and another for all of the
remaining attributes.
split Project into Project and Manager.
the determinant attribute becomes the primary key in the new relation
manager becomes the primary key to the Manager relation
the original key is the primary key to the remaining non-transitive attributes
in this case, project_no remains the key to the new Projects table.

Now we need to store the address only once
If we need to know a manager's address we can look it up in the Manager relation
The manager attribute is the link between the two tables, and in the Projects table it is now a
foreign key.
These relations are now in third normal form.

Summary: 1NF

project_no manager address
p1 Black,B 32 High Street
p2 Smith,J 11 New Street
p3 Black,B 32 High Street
p4 Black,B 32 High Street

 Project has more than one non-key field so we must
check for transitive dependency:

Project project_no manager
p1 Black,B
p2 Smith,J
p3 Black,B
p4 Black,B

Manager manager address
Black,B 32 High Street
Smith,J 11 New Street

Page 89 of 181Database System Notes V3.2

31/08/2005

A relation is in 1NF if it contains no repeating groups
To convert an unnormalised relation to 1NF either:
Flatten the table and change the primary key, or
Decompose the relation into smaller relations, one for the repeating groups and one for the
non-repeating groups.
Remember to put the primary key from the original relation into both new relations.
This option is liable to give the best results.

Summary: 2NF
A relation is in 2NF if it contains no repeating groups and no partial key functional
dependencies
Rule: A relation in 1NF with a single key field must be in 2NF
To convert a relation with partial functional dependencies to 2NF. create a set of new
relations:
One relation for the attributes that are fully dependent upon the key.
One relation for each part of the key that has partially dependent attributes

Summary: 3NF
A relation is in 3NF if it contains no repeating groups, no partial functional dependencies, and
no transitive functional dependencies
To convert a relation with transitive functional dependencies to 3NF, remove the attributes
involved in the transitive dependency and put them in a new relation
Rule: A relation in 2NF with only one non-key attribute must be in 3NF
In a normalised relation a non-key field must provide a fact about the key, the whole key and
nothing but the key.
Relations in 3NF are sufficient for most practical database design problems. However, 3NF
does not guarantee that all anomalies have been removed.

Page 90 of 181Database System Notes V3.2

31/08/2005

Normalisation - BCNF
Contents

Boyce-Codd Normal Form (BCNF)
Normalisation to BCNF - Example 1
Summary - Example 1
Example 2
Problems BCNF overcomes
Returning to the ER Model
Normalisation Example

Library

Overview

normalise a relation to Boyce Codd Normal Form (BCNF)
Normalisation example

Boyce-Codd Normal Form (BCNF)
When a relation has more than one candidate key, anomalies may result even though the
relation is in 3NF.
3NF does not deal satisfactorily with the case of a relation with overlapping candidate keys
i.e. composite candidate keys with at least one attribute in common.
BCNF is based on the concept of a determinant.
A determinant is any attribute (simple or composite) on which some other attribute is fully
functionally dependent.
A relation is in BCNF is, and only if, every determinant is a candidate key.

Consider the following relation and determinants.

 R(a,b,c,d)
 a,c -> b,d
 a,d -> b

Here, the first determinant suggests that the primary key of R could be changed from a,b to a,c. If
this change was done all of the non-key attributes present in R could still be determined, and
therefore this change is legal. However, the second determinant indicates that a,d determines b, but
a,d could not be the key of R as a,d does not determine all of the non key attributes of R (it does not
determine c). We would say that the first determinate is a candidate key, but the second determinant
is not a candidate key, and thus this relation is not in BCNF (but is in 3rd normal form).

Normalisation to BCNF - Example 1

Page 91 of 181Database System Notes V3.2

31/08/2005

Lets consider the database extract shown above. This depicts a special dieting clinic where the each
patient has 4 appointments. On the first they are weighed, the second they are exercised, the third
their fat is removed by surgery, and on the fourth their mouth is stitched closed… Not all patients
need all four appointments! If the Patient Name begins with a letter before “P” they get a morning
appointment, otherwise they get an afternoon appointment. Appointment 1 is either 09:00 or 13:00,
appointment 2 10:00 or 14:00, and so on. From this (hopefully) make-believe scenario we can
extract the following determinants:

DB(Patno,PatName,appNo,time,doctor)

Patno -> PatName
Patno,appNo -> Time,doctor
Time -> appNo

Now we have to decide what the primary key of DB is going to be. From the information we have,
we could chose:
 DB(Patno,PatName,appNo,time,doctor) (example 1a)
or
 DB(Patno,PatName,appNo,time,doctor) (example 1b)

Example 1a - DB(Patno,PatName,appNo,time,doctor)

1NF Eliminate repeating groups.

None:

DB(Patno,PatName,appNo,time,doctor)

2NF Eliminate partial key dependencies

DB(Patno,appNo,time,doctor)
R1(Patno,PatName)

3NF Eliminate transitive dependencies

None: so just as 2NF

BCNF Every determinant is a candidate key
 DB(Patno,appNo,time,doctor)
 R1(Patno,PatName)
Go through all determinates where ALL of the left hand attributes are present in a relation and

Patient No Patient Name Appointment Id Time Doctor
1 John 0 09:00 Zorro
2 Kerr 0 09:00 Killer
3 Adam 1 10:00 Zorro
4 Robert 0 13:00 Killer
5 Zane 1 14:00 Zorro

Page 92 of 181Database System Notes V3.2

31/08/2005

at least ONE of the right hand attributes are also present in the relation.
Patno -> PatName
Patno is present in DB, but not PatName, so not relevant.
Patno,appNo -> Time,doctor
All LHS present, and time and doctor also present, so relevant. Is this a candidate key?
Patno,appNo IS the key, so this is a candidate key. Thus this is OK for BCNF compliance.
Time -> appNo
Time is present, and so is appNo, so relevant. Is this a candidate key. If it was then we could
rewrite DB as:
 DB(Patno,appNo,time,doctor)
This will not work, as you need both time and Patno together to form a unique key. Thus this
determinate is not a candidate key, and therefore DB is not in BCNF. We need to fix this.
BCNF: rewrite to
 DB(Patno,time,doctor)
 R1(Patno,PatName)
 R2(time,appNo)

time is enough to work out the appointment number of a patient. Now BCNF is satisfied, and the
final relations shown are in BCNF.

Example 1b - DB(Patno,PatName,appNo,time,doctor)

1NF Eliminate repeating groups.

None:

DB(Patno,PatName,appNo,time,doctor)

2NF Eliminate partial key dependencies

DB(Patno,time,doctor)
R1(Patno,PatName)
R2(time,appNo)

3NF Eliminate transitive dependencies

None: so just as 2NF

BCNF Every determinant is a candidate key

DB(Patno,time,doctor)
R1(Patno,PatName)
R2(time,appNo)

Go through all determinates where ALL of the left hand attributes are present in a relation and
at least ONE of the right hand attributes are also present in the relation.
Patno -> PatName
Patno is present in DB, but not PatName, so not relevant.
Patno,appNo -> Time,doctor
Not all LHS present, so not relevant.
Time -> appNo
Time is present, and so is appNo, so relevant. This is a candidate key. However, Time is
currently the key for R2, so satisfies the rules for BCNF.

Page 93 of 181Database System Notes V3.2

31/08/2005

BCNF: as 3NF
 DB(Patno,time,doctor)
 R1(Patno,PatName)
 R2(time,appNo)

Summary - Example 1
This example has demonstrated three things:

BCNF is stronger than 3NF, relations that are in 3NF are not necessarily in BCNF
BCNF is needed in certain situations to obtain full understanding of the data model
there are several routes to take to arrive at the same set of relations in BCNF.
Unfortunately there are no rules as to which route will be the easiest one to take.

Example 2
Grade_report(StudNo,StudName,(Major,Adviser,
 (CourseNo,Ctitle,InstrucName,InstructLocn,Grade)))

Functional dependencies

 StudNo -> StudName
 CourseNo -> Ctitle,InstrucName
 InstrucName -> InstrucLocn
 StudNo,CourseNo,Major -> Grade
 StudNo,Major -> Advisor
 Advisor -> Major

Unnormalised

Grade_report(StudNo,StudName,(Major,Advisor,
 (CourseNo,Ctitle,InstrucName,InstructLocn,Grade)))

1NF Remove repeating groups

Student(StudNo,StudName)
StudMajor(StudNo,Major,Advisor)
StudCourse(StudNo,Major,CourseNo,
 Ctitle,InstrucName,InstructLocn,Grade)

2NF Remove partial key dependencies

Student(StudNo,StudName)
StudMajor(StudNo,Major,Advisor)
StudCourse(StudNo,Major,CourseNo,Grade)
Course(CourseNo,Ctitle,InstrucName,InstructLocn)

3NF Remove transitive dependencies

Student(StudNo,StudName)
StudMajor(StudNo,Major,Advisor)
StudCourse(StudNo,Major,CourseNo,Grade)
Course(CourseNo,Ctitle,InstrucName)
Instructor(InstructName,InstructLocn)

BCNF Every determinant is a candidate key

Page 94 of 181Database System Notes V3.2

31/08/2005

Student : only determinant is StudNo
StudCourse: only determinant is StudNo,Major
Course: only determinant is CourseNo
Instructor: only determinant is InstrucName
StudMajor: the determinants are
StudNo,Major, or
Adviser

Only StudNo,Major is a candidate key.

BCNF

Student(StudNo,StudName)
StudCourse(StudNo,Major,CourseNo,Grade)
Course(CourseNo,Ctitle,InstrucName)
Instructor(InstructName,InstructLocn)
StudMajor(StudNo,Advisor)
Adviser(Adviser,Major)

Problems BCNF overcomes

If the record for student 456 is deleted we lose not only information on student 456 but also
the fact that DARWIN advises in BIOLOGY
we cannot record the fact that WATSON can advise on COMPUTING until we have a student
majoring in COMPUTING to whom we can assign WATSON as an advisor.

In BCNF we have two tables:

STUDENT MAJOR ADVISOR
123 PHYSICS EINSTEIN
123 MUSIC MOZART
456 BIOLOGY DARWIN
789 PHYSICS BOHR
999 PHYSICS EINSTEIN

STUDENT ADVISOR
123 EINSTEIN
123 MOZART
456 DARWIN
789 BOHR
999 EINSTEIN

ADVISOR MAJOR
EINSTEIN PHYSICS
MOZART MUSIC
DARWIN BIOLOGY
BOHR PHYSICS

Page 95 of 181Database System Notes V3.2

31/08/2005

Returning to the ER Model
Now that we have reached the end of the normalisation process, you must go back and
compare the resulting relations with the original ER model
You may need to alter it to take account of the changes that have occurred during the
normalisation process Your ER diagram should always be a prefect reflection of the model
you are going to implement in the database, so keep it up to date!
The changes required depends on how good the ER model was at first!

Normalisation Example

Library

Consider the case of a simple video library. Each video has a title, director, and serial number.
Customers have a name, address, and membership number. Assume only one copy of each video
exists in the library. We are given:

video(title,director,serial)
customer(name,addr,memberno)
hire(memberno,serial,date)

 title->director,serial
 serial->title
 serial->director
 name,addr -> memberno
 memberno -> name,addr
 serial,date -> memberno

What normal form is this?

No repeating groups, so at least 1NF
2NF? There is a composite key in hire. Investigate further... Can memberno in hire be found
with just serial or just date. NO. Therefore relation is in at least 2NF.
3NF? serial->director is a non-key dependency. Therefore the relations are currently in 2NF.

Convert from 2NF to 3NF.

Rewrite
 video(title,director,serial)
To
 video(title,serial)
 serial(serial,director)

Therefore the new relations become:
 video(title,serial)
 serial(serial,director)
 customer(name,addr,memberno)
 hire(memberno,serial,date)

In BCNF? Check if every determinant is a candidate key.

 video(title,serial)
 Determinants are:
 title->director,serial Candidate key
 serial->title Candidate key
 video in BCNF

Page 96 of 181Database System Notes V3.2

31/08/2005

 serial(serial,director)
 Determinants are:
 serial->director Candidate key
 serial in BCNF

 customer(name,addr,memberno)
 Determinants are:
 name,addr -> memberno Candidate key
 memberno -> name,addr Candidate key
 customer in BCNF

 hire(memberno,serial,date)
 Determinants are:
 serial,date -> memberno Candidate key
 hire in BCNF

Therefore the relations are also now in BCNF.

Page 97 of 181Database System Notes V3.2

31/08/2005

Chapter 5 - Relational Algebra
Relational algebra introduction, including a full algebraic syntax.

Introduction to Relational Algebra
Algebraic format Relational Algebra

Page 98 of 181Database System Notes V3.2

31/08/2005

Relational Algebra
Contents

Terminology
Operators - Write
Operators - Retrieval
Relational SELECT
Relational PROJECT
SELECT and PROJECT
Set Operations - semantics
SET Operations - requirements
UNION Example
INTERSECTION Example
DIFFERENCE Example
CARTESIAN PRODUCT
CARTESIAN PRODUCT example
JOIN Operator
JOIN Example
Natural Join
OUTER JOINs
OUTER JOIN example 1
OUTER JOIN example 2

In order to implement a DBMS, there must exist a set of rules which state how the database system
will behave. For instance, somewhere in the DBMS must be a set of statements which indicate than
when someone inserts data into a row of a relation, it has the effect which the user expects. One way
to specify this is to use words to write an `essay' as to how the DBMS will operate, but words tend to
be imprecise and open to interpretation. Instead, relational databases are more usually defined using
Relational Algebra.

Relational Algebra is :

the formal description of how a relational database operates
an interface to the data stored in the database itself
the mathematics which underpin SQL operations

Operators in relational algebra are not necessarily the same as SQL operators, even if they have the
same name. For example, the SELECT statement exists in SQL, and also exists in relational algebra.
These two uses of SELECT are not the same. The DBMS must take whatever SQL statements the
user types in and translate them into relational algebra operations before applying them to the
database.

Terminology
Relation - a set of tuples.
Tuple - a collection of attributes which describe some real world entity.
Attribute - a real world role played by a named domain.
Domain - a set of atomic values.
Set - a mathematical definition for a collection of objects which contains no duplicates.

Page 99 of 181Database System Notes V3.2

31/08/2005

Operators - Write
INSERT - provides a list of attribute values for a new tuple in a relation. This operator is the
same as SQL.
DELETE - provides a condition on the attributes of a relation to determine which tuple(s) to
remove from the relation. This operator is the same as SQL.
MODIFY - changes the values of one or more attributes in one or more tuples of a relation, as
identified by a condition operating on the attributes of the relation. This is equivalent to SQL
UPDATE.

Operators - Retrieval
There are two groups of operations:

Mathematical set theory based relations:
UNION, INTERSECTION, DIFFERENCE, and CARTESIAN PRODUCT.
Special database operations:
SELECT (not the same as SQL SELECT), PROJECT, and JOIN.

Relational SELECT
SELECT is used to obtain a subset of the tuples of a relation that satisfy a select condition.

For example, find all employees born after 1st Jan 1950:

 SELECTdob '01/JAN/1950'(employee)

Relational PROJECT
The PROJECT operation is used to select a subset of the attributes of a relation by specifying the
names of the required attributes.

For example, to get a list of all employees surnames and employee numbers:

 PROJECTsurname,empno(employee)

SELECT and PROJECT
SELECT and PROJECT can be combined together. For example, to get a list of employee numbers
for employees in department number 1:

Figure : Mapping select and project

Page 100 of 181Database System Notes V3.2

31/08/2005

Set Operations - semantics
Consider two relations R and S.

UNION of R and S
the union of two relations is a relation that includes all the tuples that are either in R or in S or
in both R and S. Duplicate tuples are eliminated.
INTERSECTION of R and S
the intersection of R and S is a relation that includes all tuples that are both in R and S.
DIFFERENCE of R and S
the difference of R and S is the relation that contains all the tuples that are in R but that are not
in S.

SET Operations - requirements
For set operations to function correctly the relations R and S must be union compatible. Two
relations are union compatible if

they have the same number of attributes
the domain of each attribute in column order is the same in both R and S.

UNION Example

Figure : UNION

INTERSECTION Example

Page 101 of 181Database System Notes V3.2

31/08/2005

Figure : Intersection

DIFFERENCE Example

Figure : DIFFERENCE

CARTESIAN PRODUCT
The Cartesian Product is also an operator which works on two sets. It is sometimes called the
CROSS PRODUCT or CROSS JOIN.

It combines the tuples of one relation with all the tuples of the other relation.

CARTESIAN PRODUCT example

Page 102 of 181Database System Notes V3.2

31/08/2005

Figure : CARTESIAN PRODUCT

JOIN Operator
JOIN is used to combine related tuples from two relations:

In its simplest form the JOIN operator is just the cross product of the two relations.
As the join becomes more complex, tuples are removed within the cross product to make the
result of the join more meaningful.
JOIN allows you to evaluate a join condition between the attributes of the relations on which
the join is undertaken.

The notation used is

 R JOINjoin condition S

JOIN Example

Figure : JOIN

Natural Join
Invariably the JOIN involves an equality test, and thus is often described as an equi-join. Such joins
result in two attributes in the resulting relation having exactly the same value. A `natural join' will

Page 103 of 181Database System Notes V3.2

31/08/2005

remove the duplicate attribute(s).

In most systems a natural join will require that the attributes have the same name to identify
the attribute(s) to be used in the join. This may require a renaming mechanism.
If you do use natural joins make sure that the relations do not have two attributes with the
same name by accident.

OUTER JOINs
Notice that much of the data is lost when applying a join to two relations. In some cases this lost data
might hold useful information. An outer join retains the information that would have been lost from
the tables, replacing missing data with nulls.

There are three forms of the outer join, depending on which data is to be kept.

LEFT OUTER JOIN - keep data from the left-hand table
RIGHT OUTER JOIN - keep data from the right-hand table
FULL OUTER JOIN - keep data from both tables

OUTER JOIN example 1

Figure : OUTER JOIN (left/right)

OUTER JOIN example 2

Figure : OUTER JOIN (full)

Page 104 of 181Database System Notes V3.2

31/08/2005

Relational Algebra - Example
Contents

Symbolic Notation
Usage
Rename Operator
Derivable Operators
Equivalence
Equivalences
Comparing RA and SQL
Comparing RA and SQL

Consider the following SQL to find which departments have had employees on the `Further
Accounting' course.

 SELECT DISTINCT dname
 FROM department, course, empcourse, employee
 WHERE cname = `Further Accounting'
 AND course.courseno = empcourse.courseno
 AND empcourse.empno = employee.empno
 AND employee.depno = department.depno;

The equivalent relational algebra is

 PROJECTdname (department JOINdepno = depno (
 PROJECTdepno (employee JOINempno = empno (
 PROJECTempno (empcourse JOINcourseno = courseno (
 PROJECTcourseno (SELECTcname = `Further Accounting' course)
))
))
))

Symbolic Notation
From the example, one can see that for complicated cases a large amount of the answer is formed
from operator names, such as PROJECT and JOIN. It is therefore commonplace to use symbolic
notation to represent the operators.

SELECT ->σ (sigma)
PROJECT -> π(pi)
PRODUCT -> ×(times)
JOIN -> |×| (bow-tie)
UNION -> ∪ (cup)
INTERSECTION -> ∩(cap)
DIFFERENCE -> - (minus)
RENAME ->ρ (rho)

Usage
The symbolic operators are used as with the verbal ones. So, to find all employees in department 1:

Page 105 of 181Database System Notes V3.2

31/08/2005

 SELECTdepno = 1(employee)
 becomes σdepno = 1(employee)

Conditions can be combined together using ^ (AND) and v (OR). For example, all employees in
department 1 called `Smith':

 SELECTdepno = 1 ^ surname = `Smith'(employee)
 becomes σdepno = 1 ^ surname = `Smith'(employee)

The use of the symbolic notation can lend itself to brevity. Even better, when the JOIN is a natural
join, the JOIN condition may be omitted from |x|. The earlier example resulted in:

 PROJECTdname (department JOINdepno = depno (
 PROJECTdepno (employee JOINempno = empno (
 PROJECTempno (empcourse JOINcourseno = courseno (
 PROJECTcourseno (SELECTcname = `Further Accounting' course)))))))

becomes

 πdname (department |×| (
 πdepno (employee |×| (
 πempno (empcourse |×| (
 πcourseno (σcname = `Further Accounting' course)))))))

Rename Operator
The rename operator returns an existing relation under a new name. ρA(B) is the relation B with its
name changed to A. For example, find the employees in the same Department as employee 3.

 ρemp2.surname,emp2.forenames (
 σemployee.empno = 3 ^ employee.depno = emp2.depno (
 employee × (ρemp2employee)
)
)

Derivable Operators
Fundamental operators:σ, π, ×, ∪, -, ρ
Derivable operators: |×|,∩

A ∩ B ⇔ A - (A - B)

Page 106 of 181Database System Notes V3.2

31/08/2005

Equivalence
A|×|cB ⇔ πa1,a2,...aN(σc(A × B))

where c is the join condition (eg A.a1 = B.a1),
and a1,a2,...aN are all the attributes of A and B without repetition.

c is called the join-condition, and is usually the comparison of primary and foreign key. Where there
are N tables, there are usually N-1 join-conditions. In the case of a natural join, the conditions can be
missed out, but otherwise missing out conditions results in a cartesian product (a common mistake to
make).

Equivalences
The same relational algebraic expression can be written in many different ways. The order in which
tuples appear in relations is never significant.

A ×B ⇔ B × A
A ∩ B ⇔ B ∩ A
A ∪B ⇔ B ∪ A
(A - B) is not the same as (B - A)
σc1 (σc2(A)) ⇔ σc2 (σc1(A)) ⇔ σc1 ^ c2(A)
πa1(A) ⇔ πa1(πa1,etc(A))
where etc represents any other attributes of A.
many other equivalences exist.

While equivalent expressions always give the same result, some may be much easier to evaluate that
others.

When any query is submitted to the DBMS, its query optimiser tries to find the most efficient
equivalent expression before evaluating it.

Comparing RA and SQL
Relational algebra:
is closed (the result of every expression is a relation)
has a rigorous foundation
has simple semantics
is used for reasoning, query optimisation, etc.
SQL:
is a superset of relational algebra
has convenient formatting features, etc.
provides aggregate functions
has complicated semantics
is an end-user language.

Comparing RA and SQL
Any relational language as powerful as relational algebra is called relationally complete.

A relationally complete language can perform all basic, meaningful operations on relations.

Page 107 of 181Database System Notes V3.2

31/08/2005

Since SQL is a superset of relational algebra, it is also relationally complete.

Page 108 of 181Database System Notes V3.2

31/08/2005

Chapter 6 - Implementations
Coverage of concurrency requirements, concurrency control through locking and transactions, and
storage structure implementation approaches.

Concurrency using Transactions
Concurrency
Recovery
DBMS Implementation

Page 109 of 181Database System Notes V3.2

31/08/2005

Concurrency using Transactions
Contents

Transactions
Transaction Schedules
Lost Update scenario.
Uncommitted Dependency
Inconsistency
Serialisability
Precedence Graph
Precedence Graph : Method
Example 1
Example 2

The goal in a `concurrent' DBMS is to allow multiple users to access the database simultaneously
without interfering with each other.

A problem with multiple users using the DBMS is that it may be possible for two users to try and
change data in the database simultaneously. If this type of action is not carefully controlled,
inconsistencies are possible.

To control data access, we first need a concept to allow us to encapsulate database accesses. Such
encapsulation is called a `Transaction'.

Transactions
Transaction (ACID)
unit of logical work and recovery

A - atomicity (for integrity)
C - consistency preservation
I - isolation
D - durability

Available in SQL
Some applications require nested or long transactions

After work is performed in a transaction, two outcomes are possible:

Commit - Any changes made during the transaction by this transaction are committed to the
database.
Abort - All the changes made during the transaction by this transaction are not made to the
database. The result of this is as if the transaction was never started.

Transaction Schedules
A transaction schedule is a tabular representation of how a set of transactions were executed over
time. This is useful when examining problem scenarios. Within the diagrams various nomenclatures
are used:

Page 110 of 181Database System Notes V3.2

31/08/2005

READ(a) - This is a read action on an attribute or data item called `a'.
WRITE(x,a) - This is a write action on an attribute or data item called `a', where the value `x'
is written into `a'.
tn (e.g. t1,t2,t10) - This indicates the time at which something occurred. The units are not
important, but tn always occurs before tn+1.

Consider transaction A, which loads in a bank account balance X (initially 20) and adds 10 pounds to
it. Such a schedule would look like this:

Now consider that, at the same time as transaction A runs, transaction B runs. Transaction B gives all
accounts a 10% increase. Will X be 32 or 33?

Whoops... X is 22! Depending on the interleaving, X can also be 32, 33, or 30. Lets classify
erroneous scenarios.

Lost Update scenario.

Transaction A's update is lost at t4, because Transaction B overwrites it. B missed A's update at t3 as
it got the value of R at t2.

Time Transaction A
t1 TOTAL:=READ(X)
t2 TOTAL:=TOTAL+10
t3 WRITE(TOTAL,X)

Time Transaction A Value
TOTAL Transaction B Value

BALANCE
t1 BALANCE:=READ(X) 20
t2 TOTAL:=READ(X) 20
t3 TOTAL:=TOTAL+10 30
t4 WRITE(TOTAL,X) 30
t5 BALANCE:=BALANCE*110% 22
t6 WRITE(BALANCE,X) 22

Time Transaction A Transaction B
t1 X=READ(R)
t2 Y=READ(R)
t3 WRITE(X,R)
t4 WRITE(Y,R)

Page 111 of 181Database System Notes V3.2

31/08/2005

Uncommitted Dependency

Transaction A is allowed to READ (or WRITE) item R which has been updated by another
transaction but not committed (and in this case ABORTed).

Inconsistency

Serialisability
A `schedule' is the actual execution sequence of two or more concurrent transactions.
A schedule of two transactions T1 and T2 is `serialisable' if and only if executing this schedule
has the same effect as either T1;T2 or T2;T1.

Precedence Graph
In order to know that a particular transaction schedule can be serialized, we can draw a precedence
graph. This is a graph of nodes and vertices, where the nodes are the transaction names and the
vertices are attribute collisions.

The schedule is said to be serialised if and only if there are no cycles in the resulting diagram.

Precedence Graph : Method
To draw one;

Draw a node for each transaction in the schedule
Where transaction A writes to an attribute which transaction B has read from, draw an line
pointing from B to A.

Time Transaction A Transaction B
t1 WRITE(X,R)
t2 Y=READ(R)
t3 ABORT

Time X Y Z Transaction A Transaction B
 Action SUM
t1 40 50 30 SUM:=READ(X) 40
t2 40 50 30 SUM+=READ(Y) 90
t3 40 50 30 ACC1=READ(Z)
t4 40 50 20 WRITE(ACC1-10,Z)
t5 40 50 20 ACC2=READ(X)
t6 50 50 20 WRITE(AC2+10,X)
t7 50 50 20 COMMIT
t7 50 50 20 SUM+=READ(Z) 110
 SUM should have been 120...

Page 112 of 181Database System Notes V3.2

31/08/2005

Where transaction A writes to an attribute which transaction B has written to, draw a line
pointing from B to A.
Where transaction A reads from an attribute which transaction B has written to, draw a line
pointing from B to A.

Example 1
Consider the following schedule:

Example 2
Consider the following schedule:

Time TRAN1 TRAN2
t1 READ(A)
t2 READ(B)
t3 READ(A)
t4 READ(B)
t5 WRITE(x,B)
t6 WRITE(y,B)

Time TRAN1 TRAN2 TRAN3
t1 READ(A)
t2 READ(B)
t3 READ(A)
t4 READ(B)
t5 WRITE(x,A)
t6 WRITE(v,C)
t7 WRITE(w,B)
t8 WRITE(z,C)

Page 113 of 181Database System Notes V3.2

31/08/2005

Concurrency
Contents

Locking
Locking - Uncommitted Dependency
Deadlock
Deadlock Handling
Deadlock Resolution
Two-Phase Locking
Other Database Consistency Methods
Timestamping rules

Locking
A solution to enforcing serialisability?

read (shareable) lock
write (exclusive) lock
coarse granularity
easier processing
less concurrency
fine granularity
more processing
higher concurrency

Many systems use locking mechanisms for concurrency control. When a transaction needs an
assurance that some object will not change in some unpredictable manner, it acquires a lock on that
object.

A transaction holding a read lock is permitted to read an object but not to change it.
More than one transaction can hold a read lock for the same object.
Usually, only one transaction may hold a write lock on an object.
On a transaction schedule, we use `S' to indicate a shared lock, and `X' for an exclusive write
lock.

Locking - Uncommitted Dependency
Locking solves the uncommitted dependency problem.

Time Transaction A Transaction B Lock on R
t1 WRITE(p,R) - = X
t2 READ R (WAIT) X
t3 ...wait... ABORT X = -
t4 READ R (CONT) - = S

Page 114 of 181Database System Notes V3.2

31/08/2005

Deadlock
Deadlock can arise when locks are used, and causes all related transactions to WAIT forever...

The `lost update' senario results in deadlock with locks. So does the `inconsistency' scenario.

Deadlock Handling
Deadlock avoidance

pre-claim strategy used in operating systems
not effective in database environments.

Deadlock detection
whenever a lock requests a wait, or on some perodic basis.
if a transaction is blocked due to another transaction, make sure that that transaction is
not blocked on the first transaction, either directly or indirectly via another transaction.

Deadlock Resolution
If a set of transactions is considered to be deadlocked:

choose a victim (e.g. the shortest-lived transaction)
rollback `victim' transaction and restart it.
The rollback terminates the transaction, undoing all its updates and releasing all of its locks.
A message is passed to the victim and depending on the system the transaction may or may not
be started again automatically.

Two-Phase Locking
The presence of locks does not guarantee serialisability. If a transaction is allowed to release locks
before the transaction has completed, and is also allowed to acquire more (or even the same) locks

time Transaction A Transaction B Lock State
 X Y
t1 WRITE(p,X) - = X -
t2 WRITE(q,Y) X - = X
t3 READ(Y) (WAIT) X X
t3 ...WAIT... READ(X) (WAIT) X X
t3 ...WAIT... ...WAIT... X X

time Transaction A Transaction B Lock R
t1 READ(R) - = S
t2 READ(R) S = S
t3 WRITE(p,R) (WAIT) S
t3 ...wait... WRITE(q,R) (WAIT) S
t3 ...wait... ...wait... S

Page 115 of 181Database System Notes V3.2

31/08/2005

later then the benifit or locking is lost.

If all transactions obey the `two-phase locking protocol', then all possible interleaved executions are
guaranteed serialisable.

The two-phase locking protocol:

Before operating on any item, a transaction must acquire at least a shared lock on that item.
Thus no item can be accessed without first obtaining the correct lock.
After releasing a lock, a transaction must never go on to acquire any more locks.

The technical names for the two phases of the locking protocol are the `lock-acquisition phase' and
the `lock-release phase'.

Other Database Consistency Methods
Two-phase locking is not the only approach to enforcing database consistency. Another method used
in some DMBS is timestamping. With timestamping, there are no locks to prevent transactions
seeing uncommitted changes, and all physical updates are deferred to commit time.

locking synchronises the interleaved execution of a set of transactions in such a way that it is
equivalent to some serial execution of those transactions.
timestamping synchronises that interleaved execution in such a way that it is equivalent to a
particular serial order - the order of the timestamps.

Timestamping rules
The following rules are checked when transaction T attempts to change a data item. If the rule
indicates ABORT, then transaction T is rolled back and aborted (and perhaps restarted).

If T attempts to read a data item which has already been written to by a younger transaction
then ABORT T.
If T attempts to write a data item which has been seen or written to by a younger transaction
then ABORT T.

If transaction T aborts, then all other transactions which have seen a data item written to by T must
also abort. In addition, other aborting transactions can cause further aborts on other transactions.
This is a `cascading rollback'.

Page 116 of 181Database System Notes V3.2

31/08/2005

Recovery
Contents

Recovery: the dump
Recovery: the transaction log
Deferred Update
Example
Immediate Update
Example
Rollback

A database might be left in an inconsistent state when:

deadlock has occurred.
a transaction aborts after updating the database.
software or hardware errors.
incorrect updates have been applied to the database.

If the database is in an inconsistent state, it is necessary to recover to a consistent state. The basis of
recovery is to have backups of the data in the database.

Recovery: the dump
The simplest backup technique is `the Dump'.

entire contents of the database is backed up to an auxiliary store.
must be performed when the state of the database is consistent - therefore no transactions
which modify the database can be running
dumping can take a long time to perform
you need to store the data in the database twice.
as dumping is expensive, it probably cannot be performed as often as one would like.
a cut-down version can be used to take `snapshots' of the most volatile areas.

Recovery: the transaction log
A technique often used to perform recovery is the transaction log or journal.

records information about the progress of transactions in a log since the last consistent state.
the database therefore knows the state of the database before and after each transaction.
every so often database is returned to a consistent state and the log may be truncated to remove
committed transactions.
when the database is returned to a consistent state the process is often referred to as
`checkpointing'.

Deferred Update
Deferred update, or NO-UNDO/REDO, is an algorithm to support ABORT and machine failure
scenarios.

Page 117 of 181Database System Notes V3.2

31/08/2005

While a transaction runs, no changes made by that transaction are recorded in the database.
On a commit:
The new data is recorded in a log file and flushed to disk
The new data is then recorded in the database itself.
On an abort, do nothing (the database has not been changed).
On a system restart after a failure, REDO the log.

Example
Consider the following transaction TRAN1

Using deferred update, the process is:

If the DMBS fails and is restarted:

The disks are physically or logically damaged then recovery from the log is impossible and
instead a restore from a dump is needed.
If the disks are OK then the database consistency must be maintained. Writes to the disk which
was in progress at the time of the failure may have only been partially done.
Parse the log file, and where a transaction has been ended with `COMMIT' apply the data part
of the log to the database.
If a log entry for a transaction ends with anything other than COMMIT, do nothing for that
transaction.
flush the data to the disk, and then truncate the log to zero.
the process or reapplying transaction from the log is sometimes referred to as `rollforward'.

Immediate Update
Immediate update, or UNDO/REDO, is another algorithm to support ABORT and machine failure
scenarios.

Transaction TRAN1
read(A)
write(10,B)
write(20,C)
Commit

Time Action Log
t1 START -
t2 read(A) -
t3 write(10,B) B = 10
t4 write(20,C) C = 20
t5 COMMIT COMMIT

DISK
Before

 B = 6
A = 5 C = 2

After
 B = 10
A = 5 C = 20

Page 118 of 181Database System Notes V3.2

31/08/2005

While a transaction runs, changes made by that transaction can be written to the database at
any time. However, the original and the new data being written must both be stored in the log
BEFORE storing it on the database disk.
On a commit:
All the updates which has not yet been recorded on the disk is first stored in the log file and
then flushed to disk.
The new data is then recorded in the database itself.
On an abort, REDO all the changes which that transaction has made to the database disk using
the log entries.
On a system restart after a failure, REDO committed changes from log.

Example
Using immediate update, and the transaction TRAN1 again, the process is:

If the DMBS fails and is restarted:

The disks are physically or logically damaged then recovery from the log is impossible and
instead a restore from a dump is needed.
If the disks are OK then the database consistency must be maintained. Writes to the disk which
was in progress at the time of the failure may have only been partially done.
Parse the log file, and where a transaction has been ended with `COMMIT' apply the `new
data' part of the log to the database.
If a log entry for a transaction ends with anything other than COMMIT, apply the `old data'
part of the log to the database.
flush the data to the disk, and then truncate the log to zero.

Rollback
The process of undoing changes done to the disk under immediate update is frequently referred to as
rollback.

Where the DBMS does not prevent one transaction from reading uncommitted modifications
(a `dirty read') of another transaction (i.e. the uncommitted dependency problem) then aborting
the first transaction also means aborting all the transactions which have performed these dirty
reads.
as a transaction is aborted, it can therefore cause aborts in other dirty reader transactions,

Time Action LOG
t1 START -
t2 read(A) -
t3 write(10,B) Was B == 6, now 10
t4 write(20,C) Was C == 2, now 20
t5 COMMIT COMMIT

DISK
Before

 B = 6
A = 5 C = 2

During
 B = 10
A = 5 C = 2

After
 B = 10
A = 5 C = 20

Page 119 of 181Database System Notes V3.2

31/08/2005

which in turn can cause other aborts in other dirty reader transaction. This is referred to as
`cascade rollback'.

Page 120 of 181Database System Notes V3.2

31/08/2005

DBMS Implementation
Contents

Implementing a DBMS
Disk and Memory

Disk Arrangements
Hash tables
Binary Tree
B+ Tree Example
Index Structure and Access
Costing Index and File Access
Use of Indexes
Shadow Paging
Disk Parallelism

Implementing a DBMS
A database management system handles the requests generated from the SQL interface, producing or
modifying data in response to these requests. This involves a multilevel processing system.

Page 121 of 181Database System Notes V3.2

31/08/2005

Figure : DBMS Execution and Parsing

This level structure processes the SQL submitted by the user or application.

Parser: The SQL must be parsed and tokenised. Syntax errors are reported back to the user.
Parsing can be time consuming, so good quality DBMS implementations cache queries after
they have been parsed so that if the same query is submitted again the cached copy can be used
instead. To make the best use of this most systems use placeholders in queries, like:

SELECT empno FROM employee where surname = ?

The '?' character is prompted for when the query is executed, and can be supplied separately
from the query by the API used to inject the SQL. The parameter is not part of the parsing
process, and thus once this query is parsed once it need not be parsed again.
Executer: This takes the SQL tokens and basically translates it into relational algebra. Each
relational algebra fragment is optimised, and the passed down the levels to be acted on.
User: The concept of the user is required at this stage. This gives the query context, and also
allows security to be implemented on a per-user basis.
Transactions: The queries are executed in the transaction model. The same query from the
same user can be executing multiple times in different transactions. Each transaction is quite
separate.
Tables : The idea of the table structure is controlled at a low level. Much security is based on
the concept of tables, and the schema itself is stored in tables, as well as being a set of tables
itself.
Table cache: Disks are slow, yet a disk is the best way of storing long-term data. Memory is
much faster, so it makes sense to keep as much table information as possible in memory. The
disk remains synchronised to memory as part of the transaction control system.
Disks : Underlying almost all database systems is the disk storage system. This provides
storage for the DBMS system tables, user information, schema definitions, and the user data
itself. It also provides the means for transaction logging.

The 'user' context is handled in a number of different ways, depending on the database system being
used. The following diagram gives you an idea of the approach followed by two different systems,
Oracle and MySQL.

Figure : Users and Tablespaces

Page 122 of 181Database System Notes V3.2

31/08/2005

All users in a system have login names and passwords. In Oracle, during the connection phase, a
database name must be provided. This allows one Oracle DBMS to run multiple databases, each of
which is effectively isolated from each other.

Once a user is connected using a username and password, MySQL places the user in a particular
tablespace in the database. The name of the tablespace is independent of the same. In Oracle,
tablespaces and usernames are synonymous, and thus you should really be thinking of different
usernames for databases that serve different purposes. In MySQL the philosophy is more like a
username is a person, and that person may want to do a variety of tasks.

Once in a tablespace, a number of tables are visible, and in each table columns are visible.

In both approaches, tables in other tablespaces can be accessed. MySQL effectively sees a tablespace
and a database being the same concept, but in Oracle the two ideas are kept slightly more separate.
However, the syntax remains the same. Just as you can access column owner of table CAR, if it is in
your own tablespace, by saying

 SELECT car.owner FROM car;

You can access table CAR in another tablespace (lets call it vehicles) by saying:

 SELECT vehicles.car.owner FROM vehicles.car;

The appearance of this structure is similar in concept to the idea of file directories. In a database the
directories are limited to "folder.table.column", although "folder" could be a username, a tablename,
or a database, depending on the philosophy of the database management system. Even then, the
concept is largely similar.

Disk and Memory

The tradeoff between the DBMS using Disk or using main memory should be understood...

The DBMS runs in main memory, and the processor can only access data which is currently in main
memory. The handling of the differences between disk and main memory effectively is at the heart
of a good quality DBMS.

Disk Arrangements
Efficient processing of the DBMS requests requires efficient handling of disk storage. The important
aspects of this include:

Index handling

Issue Main Memory VS Disk
Speed Main memory is at least 1000 times faster than Disk
Storage
Space Disk can hold hundreds of times more information than memory for the same cost

Persistence When the power is switched off, Disk keeps the data, main memory forgets
everything

Access Time Main memory starts sending data in nanoseconds, while disk takes milliseconds
Block Size Main memory can be accessed 1 word at a time, Disk 1 block at a time

Page 123 of 181Database System Notes V3.2

31/08/2005

Transaction Log management
Parallel Disk Requests
Data prediction

With indexing, we are concerned with finding the data we actually want quickly and efficiently,
without having to request and read more disk blocks than absolutely necessary. There are many
approaches to this, but two of the more important ones are hash tables and binary trees.

When handling transaction logs, the discussion we have had so far has been on the theory of these
techniques. In practice, the separation of data and log is much more blurred. We will look at one
technique for implementing transaction logging, known as shadow paging.

Finally, the underlying desire of a good DBMS is to never be in a position where no further work can
be done until the disk gives us some data. Instead, by using prediction, prefetching, and parallel disk
operations, it is hoped that CPU time becomes the limiting factor.

Hash tables

A Hash table is one of the simplest index structures which a database can implement. The major
components of a hash index is the "hash function" and the "buckets". Effectively the DBMS
constructs an index for every table you create that has a PRIMARY KEY attribute, like:

CREATE TABLE test (
 id INTEGER PRIMARY KEY
 ,name varchar(100)
);

In table test, we have decided to store 4 rows...

insert into test values (1,'Gordon');
insert into test values (2,'Jim');
insert into test values (4,'Andrew');
insert into test values (3,'John');

The algorithm splits the places which the rows are to be stored into areas. These areas are called
buckets. If a row's primary key matches the requirements to be stored in that bucket, then that is
where it will be stored. The algorithm to decide which bucket to use is called the hash function. For
our example we will have a nice simple hash function, where the bucket number equals the primary
key. When the index is created we have to also decide how many buckets there are. In this example
we have decided on 4.

Figure : Hash Table with no collisions

Page 124 of 181Database System Notes V3.2

31/08/2005

Now we can find id 3 quickly and easily by visiting bucket 3 and looking into it. But now the
buckets are full. To add more values we will have to reuse buckets. We need a better hash function
based on mod 4. Now bucket 1 holds ids (1,5,9...), bucket 2 holds (2,6,10...), etc.

Figure : Hash Table with collisions

We have had to put more than 1 row in some of the buckets. This is called a hash collision. The more
collisions we have the longer the collision chain and the slower the system will get. For instance,
finding id 6 means visiting bucket 2, and then finding id 2, then 10, and then finally 6.

In DBMS systems we can usually ask for a hash index for a table, and also say how many buckets
we thing we will need. This approach is good when we know how many rows there is likely to be.
Most systems will handle the hash table for you, adding more buckets over time if you have made a
mistake. It remains a popular indexing technique.

Binary Tree

Binary trees is the latest approach to providing indexes. It is much cleverer than hash tables, and
attempts to solve the problem of not knowing how many buckets you might need, and that some
collision chains might be much longer than others. It attempts to create indexes such that all rows
can be found in a similar number of steps through the storage blocks.

The state of the art in binary tree technology is called B+ Trees. With B+ tree, the order of the
original data is maintained in its creation order. This allows multiple B+ tree indices to be kept for
the same set of data records.

the lowest level in the index has one entry for each data record.
the index is created dynamically as data is added to the file.
as data is added the index is expanded such that each record requires the same number of
index levels to reach it (thus the tree stays `balanced').
the records can be accessed via an index or sequentially.

Each index node in a B+ Tree can hold a certain number of keys. The number of keys is often
referred to as the `order'. Unfortunately, `Order 2' and `Order 1' are frequently confused in the
database literature. For the purposes of our coursework and exam, `Order 2' means that there can be
a maximum of 2 keys per index node. In this module, we only ever consider order 2 B+ trees.

B+ Tree Example

Page 125 of 181Database System Notes V3.2

31/08/2005

Figure : Completed B+ Tree

Figure : Initial Stages of B+ Tree

Page 126 of 181Database System Notes V3.2

31/08/2005

Figure : Final Stages of B+ Tree

Index Structure and Access

The top level of an index is usually held in memory. It is read once from disk at the start of
queries.
Each index entry points to either another level of the index, a data record, or a block of data
records.
The top level of the index is searched to find the range within which the desired record lies.
The appropriate part of the next level is read into memory from disc and searched.
This continues until the required data is found.
The use of indices reduce the amount of file which has to be searched.

Costing Index and File Access

The major cost of accessing an index is associated with reading in each of the intermediate
levels of the index from a disk (milliseconds).
Searching the index once it is in memory is comparatively inexpensive (microseconds).
The major cost of accessing data records involves waiting for the media to recover the
required blocks (milliseconds).
Some indexes mix the index blocks with the data blocks, which means that disk accesses can
be saved because the final level of the index is read into memory with the associated data
records.

Use of Indexes

A DBMS may use different file organisations for its own purposes.
A DBMS user is generally given little choice of file type.
A B+ Tree is likely to be used wherever an index is needed.
Indexes are generated:

(Probably) for fields specified with `PRIMARY KEY' or `UNIQUE' constraints in a

Page 127 of 181Database System Notes V3.2

31/08/2005

CREATE TABLE statement.
For fields specified in SQL statements such as CREATE [UNIQUE] INDEX indexname
ON tablename (col [,col]...);

Primary Indexes have unique keys.
Secondary Indexes may have duplicates.
An index on a column which is used in an SQL `WHERE' predicate is likely to speed up an
enquiry.
this is particularly so when `=' is involved (equijoin)
no improvement will occur with `IS [NOT] NULL' statements
an index is best used on a column with widely varying data.
indexing a column of Y/N values might slow down enquiries.
an index on telephone numbers might be very good but an index on area code might be a poor
performer.
Multicolumn index can be used, and the column which has the biggest range of values or is the
most frequently accessed should be listed first.
Avoid indexing small relations, frequently updated columns, or those with long strings.
There may be several indexes on each table. Note that partial indexing normally supports only
one index per table.
Reading or updating a particular record should be fast.
Inserting records should be reasonably fast. However, each index has to be updated too, so
increasing the indexes makes this slower.
Deletion may be slow.
particularly when indexes have to be updated.
deletion may be fast if records are simply flagged as `deleted'.

Shadow Paging

The ideas proposed for implementing transactions are prefectly workable, but such an approach
would not likely be implemented in a modern system. Instead a disk block transaction technique
would more likely be used. This saves much messing around with little pieces of information, while
maintaining disk order and disk clustering.

Disk clustering is when all the data which a query would want has been stored close together on the
disk. In this way when a query is executed the DBMS can simple "scoop" up a few tracks from the
disk and have all the data it needs to complete the query. Without clustering, the disk may have to
move over the whole disk surface looking for bits of the query data, and this could be hundreds of
times slower than being able to get it all at once. Most DBMS systems perform clustering
techniques, either user-directed or automatically.

With shadow paging, transaction logs do not hold the attributes being changed but a copy of the
whole disk block holding the data being changed. This sounds expensive, but actually is highly
efficient. When a transaction begins, any changes to disk follow the following procedure:

1. If the disk block to be changed has been copied to the log already, jump to 3.
2. Copy the disk block to the transaction log.
3. Write the change to the original disk block.

On a commit the copy of the disk block in the log can be erased. On an abort all the blocks in the log
are copied back to their old locations. As disk access is based on disk blocks, this process is fast and
simple. Most DBMS systems will use a transaction mechanism based on shadow paging.

Disk Parallelism

When you look at an Oracle database implementation, you do not see one file but several...

Page 128 of 181Database System Notes V3.2

31/08/2005

ls -sh /u02/oradata/grussell/

2.8M control01.ctl
2.8M control02.ctl
2.8M control03.ctl
 11M redo01.log
 11M redo02.log
 11M redo03.log
351M sysaux01.dbf
451M system01.dbf
3.1M temp01.dbf
 61M undotbs01.dbf
 38M users01.dbf

Each of these files has a separate function in Oracle, and requests can be fired to each of them in
parallel. The transaction logs are called redo logs. The activesql interface is stored completely in
users01. In my case all the files are in a single directory on a single disk, but each of the files could
be on a different disk, meaning that the seek times for each file could be in parallel.

Caching of the files is also going on behind the scenes. For instance, the activesql tables only take up
38MB, and thus can live happly in memory. When queries come in the cache is accessed first, and if
there is a need to go to disk then not only is the data requested read, but frequently data nearby that
block is also read. This is called prefetching, and is based on the idea that if I need to go to disk for
something, I might as well get more than I need. If it turns out that the other stuff is not needed, then
not much time or resource was wasted, but if the other stuff is needed in the near future, the DBMS
gains a huge performance hit. Algorithms help to steer the preloading strategy to its best possible
probability of loading useful data.

Lastly, the maximum performance of a database is achieved only when there are many queries which
can run in parallel. In this case data loaded for one query may satisfy a different query. The speed of
running 1 query on an empty machine may not be significantly different from running 100 similar
queries on the machine.

Page 129 of 181Database System Notes V3.2

31/08/2005

Chapter 7 - Database Connectivity
Very Basic introduction to the approaches of using SQL in a programming language.

Application Links

Page 130 of 181Database System Notes V3.2

31/08/2005

Application Links
Contents

Some concerns
Databases in other languages
Cursors
API calls
Data Linked Visual Components

Notes:
Using spreadsheets
Using PHP and MySQL

SQL Embedding
Advantages of a standard API
Popular APIs

ODBC - Open Database Connectivity
JDBC
DBI/DBD
Using ASP
A sample ASP code

Efficiency Issues

Some relational database products provide a full programming environment. Such systems include
Access, ORACLE, Paradox. At one time these integrated environments were labelled as 4GLs. This
term quickly became overused, and the term 4GL has largely fallen into disuse.

Typically such systems will include:

A database engine.
A mechanism for creating tables and entering raw data into the tables. Such a table editor will
often provide a means of establishing foreign keys and simple format restrictions.
A tool for creating applications. Often the user will be isolated from the raw data entry
mechanism. A protected environment can be built by a database designer; users are then
presented with a simplified view of the data. Some kind of programming language is usually
built in.
Various mechanisms for producing reports

The database engine is not normally visible to the user or even the programmer - indeed it should be
possible for the programmer to switch between engines relatively painlessly.

Some concerns
4GL systems can lead to the rapid development of relatively powerful applications. However:

The very speed of development can cause long term difficulties - things that start as prototypes
tend to become products.
The proprietary nature of the products they are based on can cause constant update problems.
A particular product may tie systems into specific operating systems (witness the number of
dumb terminals sitting alongside PC’s)
Vendors bring out new versions regularly, developers rarely have the luxury of working on the

Page 131 of 181Database System Notes V3.2

31/08/2005

latest version. Program maintenance on obsolete versions of a language can be irritating
As systems come and go it can be difficult to find expertise

Databases in other languages
Rather than developing in a proprietary, specialist language (VBA, dBase, PL) we can develop in a
well established, general purpose language (C, C++, Pascal) and link to a database engine.

There are several common means of achieving this

SQL embedding
using an API (application programmer interface) such as ODBC
visual programming approach (Visual Basic, Delphi...)

Each of these approaches involves the notion of a cursor.

Cursors
A cursor may be viewed as a pointer into a relational table (or view). It will usually be possible for
the programmer to step forwards and backwards through the table. Individual fields may be
accessible as

Text boxes
Program variables
API function calls

API calls
A database API (application program interface) is a set of function definitions that allow an
application program to connect to an SQL server. Typical API instructions include:

connect – identify the machine to connect to and the user name and password of the account to
be used
execute – send an SQL statement to the server. This function often returns a “handle” or
“cursor” if data is to be returned from the SQL statement
fetch – get one row of the data returned by a select statement
advance – move the cursor on to the next row
test – check if we are at the last row
close – close the connection to the database and release any resources used by the connection

Having a single standard API can give many advantages to the programmer. Ideally a programmer
can write and compile a program using a particular database product (such as Microsoft SQL Server)
then switch to another database vendor (such as Oracle) with only a trivial change to the code. As
both manufacturers provide an implementation of the API the code should work equally well in both
cases.

programmers who use non-standard SQL lose this flexibility
malevolent database vendors trick programmers into using non-standard SQL so that the code
is “locked into” a single product.

The following example is for Delphi. A similar functionality is available in VB and other languages.

Page 132 of 181Database System Notes V3.2

31/08/2005

Table1.First;
while not Table1.EOF do
begin
 Memo1.lines.Add(Table1.FieldByName('NAME').AsString);
 Table1.Next;
end;

This is a typical routine for reading from a table. The cursor is placed at the beginning of the file,
inside the loop two actions take place:

Data is read from the current record and processed in some way
The cursor is moved on to the next record

The loop terminates when the cursor attempts to move on from the final record.

Note

The order of the elements in the table is governed by an IndexFile property of the Table1 value
It is possible to change values by assigning the "pseudo-variable"; Table1.FieldByName
('NAME').AsString
Table1.Fields[x] may be used in place of FieldByName('xyz')

Data Linked Visual Components
This example shows a data-linked text box in Visual Basic. Other components are possible. Other
languages have similar mechanisms.

Page 133 of 181Database System Notes V3.2

31/08/2005

Figure : Visual Components

Notes:

The data source Data1 has it's "record source" property set to a pre-existing table "ANIMALS"
Data1 acts as a cursor - the arrows permit users to move backwards and forward through the
table at run time
Text1 is a data-linked or data-aware component. The property Text1.DataSource is set to
Data1, the property Text1.DataField is set to "NAME"
As the cursor moves the data displayed in Text1 is updated to reflect the current row
Text1 may also be set up to automatically update the database if the user performs an edit.

Using spreadsheets
Many spreadsheets permit primitive relational operators:

=VLOOKUP(B1, Sheet2!A1:B3, 2)

We can have many of the advantages of a relational database within a spreadsheet by sticking to a
few rules:

Store one record per row (1NF)
Rely on VLOOKUP index into other tables
Maintain key order

Using PHP and MySQL
selene(63)% /usr/local/mysql/bin/mysql -h
zeus -u andrew –p
mysql> use andrew
mysql> show tables;
+------------------+
| Tables_in_andrew |
+------------------+
| one |
| cia |
+------------------+
2 rows in set (0.05 sec)

mysql> select * from cia where
population>200000000;

+---------------+----------------+---------+------------+---------------+
| name | region | area | population | gdp |
+---------------+----------------+---------+------------+---------------+
| China | Asia | 9596960 | 1261832482 | 4800000000000 |

Page 134 of 181Database System Notes V3.2

31/08/2005

India	Asia	3287590	1014003817	1805000000000
Indonesia	Southeast Asia	1919440	224784210	610000000000
United States	North America	9629091	275562673	9255000000000
+---------------+----------------+---------+------------+---------------+
4 rows in set (0.11 sec)

Figure : CGI Example

<?php
if ($country) {
 $link = mysql_connect("zeus","andrew","******") or die("Could not connect");
 mysql_select_db("andrew") or die("Could not select database");
 $query = "SELECT name, region, population FROM cia WHERE name='$country'";
 $result = mysql_query($query) or die("Query failed");
 while ($row = mysql_fetch_array($result)) {
 extract($row);
 print "name: $name
\n";
 print "region: $region
\n";
 print "population: $population
\n";
 }
 print "</table>\n";
 mysql_free_result($result);
 mysql_close($link);
}else{
 print "<form><input name='country'></form>\n";
}
?>

SQL Embedding

The following code is a simple embedded SQL program, written in C. The program illustrates many,
but not all, of the embedded SQL techniques. The program prompts the user for an order number,

Page 135 of 181Database System Notes V3.2

31/08/2005

retrieves the customer number, salesperson, and status of the order, and displays the retrieved
information on the screen.

main()
{
 EXEC SQL INCLUDE SQLCA;
 EXEC SQL BEGIN DECLARE SECTION;
 int OrderID; /* Employee ID (from user) */
 int CustID; /* Retrieved customer ID */
 char SalesPerson[10] /* Retrieved salesperson name */
 char Status[6] /* Retrieved order status */
 EXEC SQL END DECLARE SECTION;

 /* Set up error processing */
 EXEC SQL WHENEVER SQLERROR GOTO query_error;
 EXEC SQL WHENEVER NOT FOUND GOTO bad_number;

 /* Prompt the user for order number */
 printf ("Enter order number: ");
 scanf ("%d", &OrderID);

 /* Execute the SQL query */
 EXEC SQL SELECT CustID, SalesPerson, Status
 FROM Orders
 WHERE OrderID = :OrderID
 INTO :CustID, :SalesPerson, :Status;

 /* Display the results */
 printf ("Customer number: %d\n", CustID);
 printf ("Salesperson: %s\n", SalesPerson);
 printf ("Status: %s\n", Status);
 exit();

query_error:
 printf ("SQL error: %ld\n", SQLCA.SQLCODE);
 exit();

bad_number:
 printf ("Invalid order number.\n");
 exit();
}

Advantages of a standard API
An ideal API is one that connects many development platforms to many database implementations.
It allows application designers to give their users access to many databases; it allows database
manufacturers to provide an interface to many application platforms.

Page 136 of 181Database System Notes V3.2

31/08/2005

Figure : Standard API via ODBC

Without a standard each language would have to provide an interface to each database
implementation.

Popular APIs

ODBC - Open Database Connectivity

Specified by Microsoft and principally associated with the MS Windows platform, ODBC includes a
basic set of routines to connect to a database engine. ODBC connections can be set up from the
control panel on a windows machine.

This is a popular and successful API. Most programming languages can form an ODBC connection
without reference to the underlying database product. Most database products can fulfill the API.

Page 137 of 181Database System Notes V3.2

31/08/2005

Figure : ODBC Data Source Administrator

Using SQLBindCol (ODBC)

The application binds columns by calling SQLBindCol. This function binds one column at a time.
With it, the application specifies:

The column number. Column 0 is the bookmark column; this column is not included in some
result sets. All other columns are numbered starting with the number 1. It is an error to bind a
higher numbered column than there are columns in the result set; this error cannot be detected
until the result set has been created, so it is returned by SQLFetch, not SQLBindCol.
The C data type, address, and byte length of the variable bound to the column. It is an error to
specify a C data type to which the SQL data type of the column cannot be converted; this error
might not be detected until the result set has been created, so it is returned by SQLFetch, not
SQLBindCol.
The address of a length/indicator buffer. The length/indicator buffer is optional. It is used to
return the byte length of binary or character data or return SQL_NULL_DATA if the data is
NULL.

When SQLBindCol is called, the driver associates this information with the statement. When each
row of data is fetched, it uses the information to place the data for each column in the bound
application variables.

For example, the following code binds variables to the SalesPerson and CustID columns. Data for
the columns will be returned in SalesPerson and CustID. Because SalesPerson is a character buffer,
the application specifies its byte length (11) so the driver can determine whether to truncate the data.
The byte length of the returned title, or whether it is NULL, will be returned in
SalesPersonLenOrInd.

Because CustID is an integer variable and has fixed length, there is no need to specify its byte
length; the driver assumes it is sizeof(SQLUINTEGER). The byte length of the returned customer
ID data, or whether it is NULL, will be returned in CustIDInd. Note that the application is only
interested in whether the salary is NULL, because the byte length is always sizeof
(SQLUINTEGER).

SQLCHAR SalesPerson[11];
SQLUINTEGER CustID;
SQLINTEGER SalesPersonLenOrInd, CustIDInd;

SQLRETURN rc;

SQLHSTMT hstmt;

// Bind SalesPerson to the SalesPerson column and CustID to the CustID column.
SQLBindCol(hstmt, 1, SQL_C_CHAR, SalesPerson, sizeof(SalesPerson),
 &SalesPersonLenOrInd);
SQLBindCol(hstmt, 2, SQL_C_ULONG, &CustID, 0, &CustIDInd);

// Execute a statement to get the sales person/customer of all orders.
SQLExecDirect(hstmt, "SELECT SalesPerson, CustID FROM Orders ORDER BY SalesPerson
 SQL_NTS);

// Fetch and print the data. Print "NULL" if the data is NULL. Code to check if r
// equals SQL_ERROR or SQL_SUCCESS_WITH_INFO not shown.
while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA) {
 if (SalesPersonLenOrInd == SQL_NULL_DATA)
 printf("NULL");

Page 138 of 181Database System Notes V3.2

31/08/2005

 else
 printf("%10s ", SalesPerson);

 if (CustIDInd == SQL_NULL_DATA)
 printf("NULL\n");
 else
 printf("%d\n", CustID);
}

// Close the cursor.
SQLCloseCursor(hstmt);

JDBC

JDBC provides a similar level of functionality to ODBC but is specific to the Java programming
language.

The following is an example of a Java program using JDBC:

/* CIA.java
 From http://sqlzoo.net By Andrew Cumming
*/
import java.sql.*;
public class CIA{
 public static void main(String[] args){
 Connection myCon;
 Statement myStmt;
 try{
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 # Connect to an instance of mysql with the follow details:
 # machine address: pc236nt.napier.ac.uk
 # database : gisq
 # user name : scott
 # password : tiger
 myCon = DriverManager.getConnection(
 "jdbc:mysql://pc236nt.napier.ac.uk/gisq"
 "scott","tiger");
 myStmt = myCon.createStatement();
 ResultSet result = myStmt.executeQuery(
 "SELECT name FROM cia WHERE population>200000000");
 while (result.next()){
 System.out.println(result.getString("name"));
 }
 myCon.close();
 }
 catch (Exception sqlEx){
 System.err.println(sqlEx);
 }
 }
}

Such a program may be compiled with the command:

javac CIA.java

It may be executed with the command:

 java -cp mysql-connector-java-2.0.14-bin.jar:. CIA

In the code shown a connection is made to the mysql database using the getConnection method – we

Page 139 of 181Database System Notes V3.2

31/08/2005

specify the machine on which mysql is running (pc236nt.napier.ac.uk), the mysql database (gisq),
the user name (scott) and the password (tiger).

Having created an SQL statement we get a ResultSet object by executing the SQL statement over the
connection. For the statement given we get four rows each with a single column – these are the
countries China, India, United States and Indonesia.

The ResultSet object is a cursor that points to a single row of the result table. Initially the cursor is
considered to be pointing to before the first row, the method result.next() is the first instruction – this
moves it on to the first row.

We can retrieve data from the ResultSet using the getString method. The getString method takes
either an attribute name (as in this case) or an integer indicating the position of the attribute. In either
case the value of that field is returned as a string. Similar methods such as getInteger are available.

DBI/DBD

An API which is growing in popularity is the DBI/DBD interface. This is an attempt to offer a
standard programmers interface to executing SQL from a variety of languages. It has many
similarities to ODBC, but without some of the complexities. It is a popular database linking API for
Perl.

The following is a fragment of Perl example code for finding out the surname of employees with a
particular department number.

my $dbh = DBI->connect("dbname","username","password");
my $depno = 3;
my $cmd = $dbh->prepare("SELECT surname FROM employee where depno=?");
my $res = $cmd->execute($depno);
while (my ($name) = $res->fetchrow_array()) {
 prnt "The employee name is $name\n";
}

Using ASP

ASP programming allows data from a database to be displayed on web pages. The ASP script (often
VBScript or JScript) is interpreted at the Web server. The web client (the browser) receives plain
HTML.

Page 140 of 181Database System Notes V3.2

31/08/2005

Figure : Using ASP

Typically the following sequence of events takes place:

A web surfer requests an ASP page by linking to www.xyz.com/page1.asp, this user is likely
to be using Netscape or IE or similar - the browser does not need any special plugins or
applets
The Web Server (probably IIS or PWS) receives the request, examines page1.asp in the local
file space and interprets it - the page makes reference to database db1.mdb - this causes a
request to the RDBMS
The RDBMS (probably SQL Server) gets the SQL request and returns the results.

A sample ASP code

<%SQL="SELECT carName FROM Cars ORDER BY carName"
 set conn = server.createobject("ADODB.Connection")conn.open "parking"
 set cars=conn.execute(SQL) %>
<% do while not cars.eof %>
 <%= cars(0) %>

 <%cars.movenext
 loop%>
<% cars.close %>

If you are interested in trying out ASP yourself, you will need to get an account on an IIS server.
You can try running your own server using PWS from Microsoft. Another option is to get a free
account from an online site such as www.brinkster.com

Efficiency Issues
No matter how the connection to the database is made, care should be taken to ensure that the
connection is handled efficiently. The application connecting to a database is typically executing on
a different machine to the database server. This has many advantages – and is essential if the
database is to be shared by more than one user machine. However having the application program
and the database server on different machines introduces a significant performance cost.

Establishing a connection, including time to log on and verify passwords can be costly.
Communication between the application machine and the server must go across a network – this is
usually considerably slower than the disk transfer rate. Sending SQL statements to the server is
relatively trivial however sending the rows of the results back may be significant. Programmers
should take care to request only the data they need, lazy programmers may be tempted to request
“SELECT * FROM table” when “SELECT id FROM table” would do. In the first case all fields may
be sent across the network for every row examined – this can be very expensive especially if there
are many fields or some of them are lengthy.

As an example consider a web site configured to dynamically create and serve web pages from
stored database information. When the server program is generating web pages it may be that
database connections are being created rapidly to solve relatively trivial requests. It is not uncommon
for this type of web server to be spending far more time opening and closing connections than
anything else. In such cases connection pooling may help. The web-server creates a pool of
connections and keeps these open between requests. This may be transparent to the application
programmer.

Page 141 of 181Database System Notes V3.2

31/08/2005

Chapter 8 - MetaData
The role of the database administrator, security in a database, and the data dictionary.

Metadata, Security, and the DBA

Page 142 of 181Database System Notes V3.2

31/08/2005

Metadata, Security, and the DBA
Contents

Metadata
Security
Granularity of DBMS Security
DBMS-level Protection
User-level Security for SQL

The GRANT command
GRANT and VIEWs

The Database Administrator

Metadata
So far in the DBMS we have looked at table schema for our database design. We have also
considered views, and in many ways these act like tables. This table theme extends to all parts of a
DBMS. In particular, Oracle makes this theme quite explicit.

In Oracle, everything is a table. Not only the things we think of as tables, but also the system things
like user information. The philosophy is simple... implement the concept of a table and we have
everything we need to build a DBMS. This includes security concepts; secure the table concept and
everything is similarly secure.

Oracle has a special tablespace, called SYS, which holds all the system information. Various security
levels protect SYS, so dependent on your access rights you may or may not be able to see all the
tables held there. SYS in total holds hundreds of tables. The list below gives a few of these table
names.

USER_OBJECTS
TAB
USER_TABLES
USER_VIEWS
ALL_TABLES
USER_TAB_COLUMNS
USER_CONSTRAINTS
USER_TRIGGERS
USER_CATALOG
DBA_USERS

Page 143 of 181Database System Notes V3.2

31/08/2005

For example, the DBA_USERS table holds user information.

SQL> describe dba_users;
 Name Null? Type
 --- -------- -------------------------
 USERNAME NOT NULL VARCHAR2(30)
 USER_ID NOT NULL NUMBER
 PASSWORD VARCHAR2(30)
 ACCOUNT_STATUS NOT NULL VARCHAR2(32)
 LOCK_DATE DATE
 EXPIRY_DATE DATE
 DEFAULT_TABLESPACE NOT NULL VARCHAR2(30)
 TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30)
 CREATED NOT NULL DATE
 PROFILE NOT NULL VARCHAR2(30)
 INITIAL_RSRC_CONSUMER_GROUP VARCHAR2(30)
 EXTERNAL_NAME VARCHAR2(4000)

The DBA_USERS table holds the username of users, an ID number unique for each user, their login
password, the tablespace where their personal tables and views are created, a space for calculating
the results of queries (temporary tablespace), plus many more internal details.

An example of a table holding the more internal features of the DBMS is the
USER_CONSTRAINTS table. This (extensively) documents the constraints which exist between
tables in the database. A summary of the attributes is shown below.

SQL> describe user_constraints;
 Name Null? Type
 --- -------- -------------------------
 OWNER NOT NULL VARCHAR2(30)
 CONSTRAINT_NAME NOT NULL VARCHAR2(30)
 CONSTRAINT_TYPE VARCHAR2(1)
 TABLE_NAME NOT NULL VARCHAR2(30)

 DEFERRABLE VARCHAR2(14)
 DEFERRED VARCHAR2(9)

 LAST_CHANGE DATE

Here a row links the owner of the constraint to a constraint name and type. This constraint is on a
table name. The date when this change was made is recorded. Oracle allows constraint checking to
be put off till the end of a transaction, and this is known as DEFERRING. If a constraint can be
deferred then it will be DEFERRABLE, and if it is currently deferred that too can be recorded.

Page 144 of 181Database System Notes V3.2

31/08/2005

select owner,table_name,constraint_name,constraint_type
from all_constraints
where owner = 'DBRW'
and table_name in ('EMPLOYEE','JOBHISTORY','DEPARTMENT')
;

From the tutorials you may remember these tables. The constraints indicate that the DEPARTMENT
has only a PRIMARY KEY constraint. EMPLOYEE and JOBHISTORY also have primary key
constraints, but also have some foreign key referential integrity constraints (R). The constraint names
are automatically generated when the tables are created. These names can be useful, as attempting to
delete table DEPARTMENT results in a error indicating that this would violate constraint
SYS_C0010804, and using this table shows that DEPARTMENT must have a foreign key
relationship from EMPLOYEE, and therefore EMPLOYEE must be dropped first.

There is a great deal of metadata in a DBMS, extending well beyond the implementation of the user
schema. This includes support for application links and schema documentation (such as comments).
Exploring this metadata can give a valuable insight into DMBS construction and performance issues.

Security
Security of the database involves the protection of the database against:

unauthorised disclosures
alteration
destruction

The protection which security gives is usually directed against two classes of user

Stop people without database access from having any form of access.
Stop people with database access from performing actions on the database which are not
required to perform their duties.

There are many aspects to security

Legal, social and ethical aspects

Legally there is the Data Protection Act, which places restrictions on databases which contain
information on living people. This was created to protect the public from data contained on a
computer, about themselves, to which the public had previously no legal right of access. Information
on computers can be wrong, and decisions made on wrong information concerns the public and
additionally is of no benefit to the company holding the data. The act supports the idea of the public
querying data, and indicating errors in that data.

OWNER TABLE_NAME CONSTRAINT_NAME CON
DBRW DEPARTMENT SYS_C0010801 P
DBRW EMPLOYEE SYS_C0010803 P
DBRW EMPLOYEE SYS_C0010804 R
DBRW JOBHISTORY SYS_C0010807 P
DBRW JOBHISTORY SYS_C0010808 R

Page 145 of 181Database System Notes V3.2

31/08/2005

However, just because a database is legal does not make it socially or ethically acceptable. Collating
medical records on computer for a hospital is acceptable, but not having enough security to prevent
insurance companies accessing the database and using that as a basis for rejecting life assurance
applications could be considered questionable. Frequently it is best to place the tightest restrictions
on who can access data, and where necessary security is deliberately relaxed to allow only legitimate
queries to take place.

Physical controls

Security often begins with physical controls. If a person cannot enter the building where the database
runs and is accessed, then that person cannot access the database. Usually the construction of
security is a layered approach, where a person bent on accessing the database must penetrate
multiple levels of security. The simple precaution of having all the database access points behind
locked doors can only add to the security of the system.

Policy questions

Security of a database is often the enforcement in the database of the company policy. All companies
should have a policy statement, listing what is acceptable and what is not. Companies with weak
policy statements will often have the weakest security. At a minimum, it should be policy that data
stored in the database should not be made available to outside agents without written consent from a
Managing Director. Without a policy statement, it is hard to argue that an employee has actually
done anything wrong...

Operational problems

If only a single person has access to a database, security is certainly higher than if many people have
access. However, if all the people in the UK had to phone the same one person to find out what their
bank balance was the whole system would quickly become unworkable. Security considerations
often have to be balanced against operational issues.

Hardware controls

No matter how secure the database actually is, if a person can simply steal the hard drive on which
the database is stored, then that person can access the database at leisure. This case is obvious, but
less obvious security failures, such as taking a copy of a backup tape of the database, can be harder
to safeguard against.

Operating system security

Most DBMS's run on top of an operating system (OS). Examples of OS's include Window 95,
Windows NT, and Unix. The database may be secure from within the DBMS, but if the database can
also be accessed from the OS using simple file handling programs, then a clear weakness in the
security model exists.

Database system security

Within the DBMS itself, if anyone can access anything then having any other sort of security seems
pointless. The use of user accounts and password protection of user identities is a good starting point
to improve security. User identities is also an aid to accountability. Protection of certain elements of
the database with respect to certain users (or user groups) should always be considered where
potentially confidential data is being stored. It is DBMS security which is the focus of this
discussion.

Page 146 of 181Database System Notes V3.2

31/08/2005

Granularity of DBMS Security
The unit of data used in specifying security in the database can be, for example;

the entire database
a set of relations
individual relation
a set of tuples in a relation
individual tuple
a set of attributes of all tuples
an attribute of an individual tuple.

DBMS-level Protection
Data encryption:

Often it is hard to prevent people from copying the database and then hacking into the copy at
another location. It is easier to simply make copying the data a useless activity by encrypting the
data. This means that the data itself is unreadable unless you know a secret code. The encrypted data
in combination with the secret key is needed to use the DBMS.

Audit Trails:

If someone does penetrate the DBMS, it is useful to find out how they did it and what was accessed
or altered. Audit Trails can be set up selectively to minimise disk usage, identify system weaknesses,
and finger naughty users.

User-level Security for SQL
Each user has certain access rights on certain objects.
Different users may have different access rights on the same object.

In order to control the granularity of access rights, users can

Have rights of access (authorisations) on a table
Have rights of access on a view. Using views, access rights can be controlled horizontal and
vertical subsets on a table, and on dynamically generated data from other tables.

The GRANT command

GRANT is used to grant privileges to users

GRANT privileges ON tablename
 TO { grantee ... }
 [WITH GRANT OPTION]

Possible privileges are:

SELECT - user can retrieve data
UPDATE - user can modify existing data
DELETE - user can remove data
INSERT - user can insert new data

Page 147 of 181Database System Notes V3.2

31/08/2005

REFERENCES - user can make references to the table

The WITH GRANT OPTION permits the specified user can grant privileges which that user
possesses on that table to other users. This is a good way to permit other users to look after
permissions for certain tables, such as allowing a manager to control access to a table for his or her
subordinates.

grantee need not be a username or a set of usernames. It is permitted to specify PUBLIC, which
means that the privileges are granted to everyone.

GRANT SELECT ON userlist TO PUBLIC;

GRANT and VIEWs

When a view is created is when the security of the view is checked. Thus if there was sufficient
security for the view to execute when it was created, then the view will always work no matter what
additional GRANTs are made. This can be used to restrict columns and rows from a user.

GRANT select ON employee to jim;
create view empjim as
select empno, surname,forenames from employee;
GRANT select on empjim to jim;
REVOKE select ON employee from jim;

You can also restrict rows of a table to particular users by their username or other feature. In Oracle,
the username of the current user is returned by the function USER. Thus the following creates a
single table, but gives each user of the view the ability to look at only rows where the username
matches their username.

CREATE table checker (
 username varchar(200)
 ,secretinfo varchar(100)
);
CREATE view userview as
 select * from checker
 where username = USER
;

select * from userview -- shows rows where the username matches.
;

The Database Administrator
As system controls increase usability of the system decreases. Actually it is perfectly possible to
have an efficient and reliable system which no one can use effectively. This is never the explicit goal
of the DBA, but there is a danger that it is an implicit goal.

The person who looks after the database needs to balance all needs of the users, whether they know
they need it or not. No user wants security, for instance, yet if someone hacks in and deletes all their
work the DBA becomes the target. Perfectly designed security is completely invisible to the valid
user, but is automatic and total for the invalid user.

Security is not the only issue of importance for the DBA. They are also concerned with:

System performance and tuning
Data backup and recovery

Page 148 of 181Database System Notes V3.2

31/08/2005

Product and tool selection, installation, and maintainance
System documentation
Support
Education
Fortune Telling / Future Prediction

A good DBA is almost never seen. The fact is that if you have to phone the DBA then the DBA has
failed. The system will be monitored continuously, and problems detected and fixed before they are
noticed by users. Long term issues, such as data growth, diversification, the addition of new projects,
do need to be discussed with the DBA, but the DBA should be able to detect most issues anyway and
handle them transparently from the users and developers.

Page 149 of 181Database System Notes V3.2

31/08/2005

Chapter 9 - Offline Tutorials
Mostly this site is involved with online tutorials, but a number of paper-based tutorials are also
included in the online book.

SQL Tutorial 1 - Intro material covering activeSQL tutorials 1 and 2.
SQL Tutorial 2 - Material covering activeSQL tutorial 3.
SQL Tutorial 3 - Material covering activeSQL tutorial 4.
SQL Tutorial 4 - Material covering activeSQL tutorial 5.
jobs database ER diagram
dressmaker database ER diagram
musician database ER diagram
Tutorial - ER Diagram Examples 1-2
Tutorial - ER Diagram Examples 3-5
Tutorial - Normalisation

Page 150 of 181Database System Notes V3.2

31/08/2005

Tutorial 1
Contents

SQL with Oracle
SPECIAL TABLE
Predicates
Comparisons
BETWEEN (Inclusive)
LIKE
IS NULL
Set Functions
Ordering rows of a query result
Prevention of duplicate rows
Counting unique rows

SQL with Oracle
SQL (Structured Query Language) is the structured query language used to manipulate relational
databases. The concept of relational database was first proposed by Codd in 1970, and a language to
extract and manipulate the data in it was developed theoretically during the following years. All SQL
statements are instructions to the database. SQL is a non-procedural language, which means that
commands are not executed step by step according to how they were written, but they are retained in
memory, read through and executed in the most effective way. In relational database terminology,
SQL provides 'automatic navigation' to the data in the database.

In these notes, you see an indication of two possible interfaces to SQL, namely sqlplus and
activeSQL. Sqlplus is the standard Oracle interface while activeSQL is an experimental interface
which Napier students have access to. For our tutorials we will all be using activeSQL.

Command Endings
Note that all SQL commands typed into sqlplus MUST end in a ; (semicolon) character. It will not
work without it. The activeSQL interface is more forgiving, but even then if you enter more than 1
command into the interface at a time you MUST separate the commands with a semicolon.

When entering SQL, you can have as many space characters and return characters as you like. They
are completely ignored by Oracle. Sqlplus will, when you hit return, tell you what line you are
currently on. These numbers are not part of the command so do not let them confuse you. In sqlplus,
if you hit return twice (return on a blank line) the current command is cancelled.

In activeSQL, no command is executed until you hit the submit button.

SELECT
SQL command SELECT is used to retrieve information from a table. SELECT informs Oracle which
table(s) to use and which column(s) and row(s) to retrieve.

The asterisk can be used to denote all fields.

Page 151 of 181Database System Notes V3.2

31/08/2005

To list all fields and all records from the table employee.

SELECT *
FROM employee
;

To display only the fields empno and depno but all records

SELECT empno,depno
FROM employee;

SPECIAL TABLE
There is a special table called CAT, which contains the name and type of all tables in your
namespace. Running

SELECT * from CAT:

produces the name and type of all local tables. This includes the 5 tables used in these tutorials:
employee, empcourse, jobhistory, course, and department.

To find out about a particular table, you can look at the commands which created it, or you can use
the DESCRIBE command. This tells you the attributes of the table in question. In sqlplus, this
description does not include the Foreign Keys (the links to other tables - more of this in tutorial 2)
but in activeSQL Foreign Keys ARE shown. For instance:

DESCRIBE employee;

 empno integer primary key
 surname varchar(15)
 forenames varchar(30)
 dob date
 address varchar(50)
 telno varchar(20)
 depno integer references department(depno)

varchar(20) indicates a string which can be up to 20 characters long.

Date indicates that field is an Oracle date.

Integer indicates that that attribute is a number.

Depno integer References department(depno) tells us that depno in employee is a link to the
department table's depno attribute. In this confusing case there are two attributes called depno, one in
employee and one in department. These attributes are different attributes in different tables.

Predicates
Search conditions are made up of predicates. These are then combined together with ANDs, ORs,
and NOTs.

There are seven types of predicate:

comparison
BETWEEN predicate

Page 152 of 181Database System Notes V3.2

31/08/2005

IN predicate
LIKE predicate
ANY or ALL predicate
EXISTS predicate
IS NULL

Comparisons
The comparisons available are

List the fields empno, surname, telno of all employees who have a surname Wright. Notice the quote
marks required for character constants. Note also that anything within the quotes is case sensitive.

SELECT empno, surname, telno
FROM employee
WHERE surname = 'Wright'

List all current salaries in the range £20000 to £30000, listing their empno values.

SELECT empno, enddate, salary
FROM jobhistory
WHERE enddate IS NULL
AND salary >= 20000
AND salary <= 30000

List all the employees working in the company on January 1st 1980 and their position

SELECT empno, position, startdate, enddate
FROM jobhistory
WHERE (startdate < '01-JAN-1980' AND enddate > '01-JAN-1980')
OR (startdate < '01-JAN-1980' AND enddate IS NULL)

BETWEEN (Inclusive)
List all the courses which occurred during 1988

SELECT *
FROM course
WHERE cdate BETWEEN '01-JAN-1988' AND '31-DEC-1988'

List all the courses which did not occur in 1988

SELECT *
FROM course
WHERE cdate NOT BETWEEN '01-JAN-1988' AND '31-DEC -1988'

= equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to

Page 153 of 181Database System Notes V3.2

31/08/2005

LIKE
The LIKE predicate provides the only pattern matching capability in SQL for the character data
types. It takes the following form

columnname [NOT] LIKE pattern-to-match

The pattern match characters are the percent sign (%) to denote 0 or more arbitrary characters, and
the underscore (_) to denote exactly one arbitrary character.

List the employee numbers and surnames of all employees who have a surname beginning with C.

SELECT empno,surname
FROM employee
WHERE surname LIKE 'C%'

List all course numbers and names for any course to do with accounting.

SELECT courseno,cname
FROM course
WHERE cname LIKE '%ccount%'

List all employees who have r as the second letter of their forename.

SELECT surname, forenames
FROM employee
WHERE forenames LIKE '_r%'

IS NULL
List all employees numbers and their current position

SELECT empno,position
FROM jobhistory
WHERE enddate IS NULL

The remaining predicates will be dealt with at a later stage.

Set Functions
A set function is a function that operates on an entire column of values, not just a single value.

List the total wage bill for the company at the moment.

SELECT SUM(salary)
FROM jobhistory
WHERE enddate IS NULL

This will retrieve the total salary for employees, where the enddate is empty or NULL.

The following are the set functions supported

Table 1: Set Functions

Page 154 of 181Database System Notes V3.2

31/08/2005

Find the number of employees working currently.

SELECT COUNT(*)
FROM jobhistory
WHERE enddate IS NULL

The COUNT(*) function is used to count rows in a table, and is the exception to the following rule.

NULL values are ignored by the set functions.

Count how many jobs that employee number 25 has had previously.

SELECT COUNT(enddate)
FROM jobhistory
WHERE empno = 25

Count how many jobs employee number 25 has had, including current job.

SELECT COUNT(startdate)
FROM jobhistory
WHERE empno = 25

Calculate the average salary for all employees.

SELECT AVG(salary)
FROM jobhistory
WHERE enddate IS NULL

Note that a 'column label' might be usefully added. This will be output in uppercase format unless
enclosed in double quotes as follows :--

Find out the greatest salary.

SELECT MAX(salary) "Highest Salary"
FROM jobhistory
WHERE enddate IS NULL

Ordering rows of a query result
The order in which the selected rows are displayed is changed by adding an ORDER BY clause to
the end of your SELECT command. The ordering is done numerically or alphabetically and can be
ascending or descending.

List all the employee numbers and salaries, ordered by their salary.

SELECT empno, salary

Name Description
COUNT Count of occurrences
SUM Summation
AVG Average (Sum/Count) zero if Count = zero
MAX Maximum value
MIN Minimum value

Page 155 of 181Database System Notes V3.2

31/08/2005

FROM jobhistory
WHERE enddate IS NULL
ORDER BY salary

To order by descending order you need to add DESC in the ORDER BY command

SELECT empno, salary
FROM jobhistory
WHERE enddate IS NULL
ORDER BY salary DESC

Prevention of duplicate rows
If you print all the jobs in the jobhistory table you will get duplicate rows.

SELECT position
FROM jobhistory

To print out only one for each different job you need to add DISTINCT in the SELECT clause.

SELECT DISTINCT position
FROM jobhistory

Counting unique rows
Often you would like to count how many different rows exist in the result of a query. Doing:

SELECT DISTINCT count(position)
FROM jobhistory

result in an answer which is no different from the same query without the DISTINCT. This is caused
by the fact that count() is done before DISTINCT, and therefore in this case DISTINCT does
nothing. What is actually needed is a way of forcing DISTINCT to be done before the count. This
can be achieved by doing:

SELECT count(DISTINCT position)
FROM jobhistory

Page 156 of 181Database System Notes V3.2

31/08/2005

Tutorial S2
Contents

Joining tables
Aliases or correlation names.
Equi-joins and non-equi joins
GROUP BY
HAVING
Execution of queries
Joining Tables to Themselves - Self joins

Joining tables
Often the information required is contained in more than one table. You can specify more than one
table in the FROM clause. For example the use of the two tables employee and jobhistory in the
FROM clause will create a larger table with each row in employee combined with each row in
jobhistory. Each of these new rows will have all the columns from the employee table and the
jobhistory table. If there are 3 rows in employee and 5 rows in jobhistory this will create a new table
of 3 times 5 (i.e. 15) rows. This is known as a Cartesian product.

A Cartesian product will contain many rows of no practical interest, such as rows containing the
employee and jobhistory details for two different employees. It is therefore necessary to have some
restriction on the join. Here a likely requirement is that the empno field in the employee table
matches the empno of the jobhistory table. Each row in the resulting table will then contain
employee and jobhistory data for only one employee.

List the employees number, surname, and current job title.

SELECT employee.empno, surname, position
FROM employee, jobhistory
WHERE enddate IS NULL
AND employee.empno = jobhistory.empno

A more modern syntax of this would be.

SELECT employee.empno, surname, position
FROM employee JOIN jobhistory ON (employee.empno = jobhistory.empno)
WHERE enddate IS NULL

Notice that the fields which are not unique must be explicitly referred to by use of the table name
and a fullstop followed by the fieldname. For instance empno occurs in both the employee table and
the jobhistory table and so it must be explicitly referred to. This also means that it must be explicitly
referred to in the SELECT clause even though the values are the same for employee.empno and
jobhistory.empno.

You can use more than two tables in the FROM clause. There is no theoretical limit, however there
will be some limit placed on you by the system itself. If you have N tables in the FROM clause then
you will normally need (N – 1) join conditions.

Page 157 of 181Database System Notes V3.2

31/08/2005

Aliases or correlation names.
Although table prefixes prevent ambiguity in a query, they can be tedious to enter. You can define
temporary labels in the FROM clause and use them elsewhere in the query. Such temporary labels
are sometimes known as temporary table aliases.

List the employee number, surname and department of each employee.

SELECT e.empno, surname, dname
FROM employee e JOIN department d ON (e.depno = d.depno)

Notice that the table employee is given an alias e, and department an alias d. This can then be used
during the query. It is also possible to use the actual name. Notice also that the join is on the two
tables employee and department.

Equi-joins and non-equi joins
When you join the table department to the table employee, the join condition specifies the
relationship between them. Such joins are known as equi-joins because the comparison operator is
the equals operator. Any join that does not use this operator is known as a non-equi join.

GROUP BY
Conceptually GROUP BY rearranges the table designated in the FROM clause into partitions or
groups, such that within any one group all rows have the same value for the GROUP BY field(s).

List the departments and their total current salary bill

SELECT depno, sum(salary) "Salary"
FROM employee JOIN jobhistory ON (employee.empno=jobhistory.empno)
WHERE enddate IS NULL
GROUP BY depno

In the above example, table employee is grouped so that one group contains all the rows for
department 1, another contains all the rows for department 2, and so on.

The sum(salary) "Salary" renames the column Salary.

Each expression in the SELECT clause must be single-valued per group (i.e. it can be one of the
GROUP BY fields or an arithmetic expression involving such a field), or a constant, or a function
such as SUM that operates on all values of a given field within a group and reduces those values to a
single value.

The purpose of such grouping is generally to allow some set function to be computed for each group.

HAVING
The GROUP BY clause may be qualified by a HAVING clause. The HAVING clause restricts the
groups which are selected in the output. The groups that do not meet the search condition are
eliminated.

Each expression in the HAVING clause must also be single-valued per group.

Page 158 of 181Database System Notes V3.2

31/08/2005

List the number of people who have been on each course numbered 1 to 6

SELECT courseno, COUNT (*)
FROM empcourse
GROUP BY courseno
HAVING courseno BETWEEN 1 AND 6

Execution of queries
From a conceptual standpoint, the subselect is evaluated in the following manner: First, the Cartesian
product of all tables identified in the FROM clause is formed. From that product, rows not satisfying
the search condition specified in the WHERE clause are eliminated. Next, the remaining rows are
grouped in accordance with the specifications of the GROUP BY clause. Groups not satisfying the
search condition in the HAVING clause are then eliminated. Then, the expressions specified in the
SELECT clause are evaluated. Finally, the ORDER BY clause, if present, is evaluated and, if the key
word DISTINCT has been specified, any duplicate rows are eliminated from the result table.

Joining Tables to Themselves - Self joins
Sometimes a table must be joined to itself. In this case, any references to fieldnames become
ambiguous and aliases must be used to uniquely identify required fields.

List the surname and forename of all the employees who work in the same department as employee
number 16. In this case two “versions” of the employee table must be used, one for employees other
than 16, and one for employee 16 :-

SELECT x.surname, x.forenames
FROM employee x, employee y
WHERE x.depno = y.depno
AND y.empno = 16
AND x.empno != 16

You need to have one version of the table employee so that you can find the department number of
employee 16. In the above example this table is called y. You then look through another version of
the table employee, here calledx, to find people who are in the same department. Finally, you do not
want employee number 16 to be displayed, so you should eliminate this case by adding x.empno !=
16.

Notice you have to make sure that you do not get the different tables confused and display y.surname
and y.forenames since this will just display the surname and forename of employee 16 as many times
as there are employees in their department. If there is any risk of confusion you are advised to avoid
cryptic labels and use meaningful labels , for example replace "x", "y" with "others", "emp16"; :-

SELECT others.surname, others.forenames
FROM employee others, employee emp16
WHERE others.depno = emp16.depno
AND emp16.empno = 16
AND others.empno != 16

Page 159 of 181Database System Notes V3.2

31/08/2005

Tutorial S3
Contents

Subqueries
ANY and ALL
IN and NOT IN
EXISTS and NOT EXISTS
UNION of subqueries

Subqueries
Nesting of queries is accomplished in SQL by means of a search condition feature known as the
subquery. A subquery is a subselect used in a predicate of a search condition. Multiple levels of
nesting are permitted. It is often possible to frame a query either by using subqueries or by using
joins between the tables.

Some students find subqueries easier to understand than using joins. So if you had difficulty with
joins in tutorial 2 you might find this tutorial a lot easier.

The following example was given in tutorial 2 using a self join :-

List the surname and forename of all the employees who work in the same department as employee
number 16.

SELECT x.surname, x.forenames
FROM employee x, employee y
WHERE x.depno = y.depno
AND y.empno = 16
AND x.empno != 16

This could be implemented using a subquery as :-

SELECT surname, forenames
FROM employee
WHERE depno =
 (SELECT depno
 FROM employee
 WHERE empno = 16)
AND empno != 16

The subquery in the brackets is evaluated first. The value in SELECT clause is then placed in the
outer query, which is then evaluated. So that if the subquery established that employee 16 worked in
department number 5, the following outer query would then be evaluated.

SELECT surname, forenames
FROM employee
WHERE depno = 5
AND empno != 16

The SELECT clause of a SUBQUERY can return ONLY ONE field name which may be associated
with zero, one or many values.

Page 160 of 181Database System Notes V3.2

31/08/2005

Notice also in the previous example that although there are two different occurrences of the table
employee, they need not be given aliases. This is because the definition of employee in each FROM
clause above, is only referred to locally within the predicates of the corresponding SELECT clause.

Aliases may be optionally used as shorthand or to clarify statements. However, at times, it is
essential to use an alias, for example to reference a table defined in an outer query. In the following
example, if there was no explicit reference to x.depno in the subquery, then it would assumed to be
implicitly qualified by y.depno.

Unqualified columns in a subquery are looked up in the tables of that subquery, then in the table of
the next enclosing query and so on.

The overall query is evaluated by letting x take each of its permitted values in turn (i.e. letting it
range over the employee table), and for each such value of x, evaluating the subquery.

This type of query must be done by using subqueries and cannot be done just using joins.

List the employee's number, name and department for any employee with a current salary greater
than the average current salary for their department.

SELECT x.empno, x.surname, x.depno
FROM employee x, jobhistory
WHERE enddate IS NULL
AND x.empno = jobhistory.empno
AND salary >
 (SELECT AVG(salary)
 FROM employee y, jobhistory
 WHERE y.empno = jobhistory.empno
 AND enddate IS NULL
 AND y.depno = x.depno)

Notice that there need be no correlation names for the jobhistory tables as they are only used locally
and therefore are implicit.

The following examples cover predicates which are used in combination with subqueries. They
specify how values returned by a subquery are to be used in the outer WHERE clause.

ANY and ALL
Any or ALL can be inserted between the comparison operator (=, !=, >, >=, <, <=) and the subquery.

List the employees who earn more than any employee in Department 5 :-.

SELECT employee.empno, surname, salary
FROM employee, jobhistory
WHERE enddate IS NULL
AND employee.empno = jobhistory.empno
AND salary > ANY
 (SELECT salary
 FROM employee, jobhistory
 WHERE enddate IS NULL
 AND depno=5
 AND employee.empno = jobhistory.empno)

The lowest salary in department 5 is £17000, employee 29, the main query then returns employees
who earn more than £17000.

Page 161 of 181Database System Notes V3.2

31/08/2005

List the employees who earn more than all the employees in Department 5 :-

SELECT employee.empno, surname, salary
FROM employee, jobhistory
WHERE enddate IS NULL
AND employee.empno = jobhistory.empno
AND salary > ALL
 (SELECT salary
 FROM employee, jobhistory
 WHERE enddate IS NULL
 AND depno=5
 AND employee.empno = jobhistory.empno)

Since the greatest salary in department 5 is £29000 , employee number 28, the main query returns all
employees who earn more than £29000.

IN and NOT IN
Subqueries can return a list of values. IN and NOT IN are used to check if values are in this list.

List all the employee numbers of anyone who has been on a course in 1988.

SELECT empno
FROM empcourse
WHERE courseno IN
 (SELECT courseno
 FROM course
 WHERE cdate BETWEEN '01-JAN-1988' AND '31-DEC-1988')

Notice the subquery must contain a reference to exactly one column in its SELECT clause.

EXISTS and NOT EXISTS
EXISTS evaluates to true if and only if the set represented by the subquery is nonempty.

List all the employees who have at least one other employee currently doing the same job as them.

SELECT x.empno, surname, x.position
FROM jobhistory x, employee
WHERE x.empno = employee.empno
AND x.enddate IS NULL
AND EXISTS
 (SELECT *
 FROM jobhistory y
 WHERE y.enddate IS NULL
 AND y.position = x.position
 AND x.empno != y.empno)

UNION of subqueries
A query may be composed of two or more queries with the operator UNION.

UNION returns all the distinct rows returned by either of the queries it applies to. This means it
removes all duplicates.

UNION ALL returns all rows returned by either of the queries it applies to. Duplicates allowed.

Page 162 of 181Database System Notes V3.2

31/08/2005

List all employees who are in department 4 or 5.

SELECT forenames, surname
FROM employee
WHERE depno = 4
UNION
SELECT forename, surname
FROM employee
WHERE depno = 5

This UNION could have been done more concisely by using a IN clause.

SELECT forenames, surname
FROM employee
WHERE depno IN (4, 5)

However, this is not as easy if the two parts of the query are from different tables.

List all employees who were born before 1960 or who earn more than £25000.

SELECT forenames, surname
FROM employee
WHERE dob < ‘01-JAN-1960’
UNION
SELECT forenames, surname
FROM employee, jobhistory
WHERE employee.empno = jobhistory.empno
AND enddate IS NULL
AND salary > 25000

Any employee who meets both conditions is listed only once.

Page 163 of 181Database System Notes V3.2

31/08/2005

Tutorial 4
Contents

VIEWS and Miscellany
VIEWS
Removal of a VIEW
differences between sqlplus and activeSQL
Outer Join
Arithmetic operation on dates etc.
NVL function

VIEWS and Miscellany

VIEWS

CREATE VIEW viewname AS defines a virtual table. A query appears after the AS statement, and
the result of executing this query appears as a new table called viewname. However, the data
resulting from executing the AS statement is not stored directly in the database. Only the view
definition is stored.

Each time a view table is used in an SQL statement, the statement operates on the view's base tables
to generate the required view content. Views are therefore dynamic and their contents change
automatically as base tables change.

Views can be usefully employed for intermediate tables, and may replace subenquires in order to
simplify complex queries

All SELECTs on views are fully supported. Updates, inserts and deletes on views are, however,
subject to several rules. Although in this tutorial we make no attempt to update or modify tables, it is
important to realise what these modification rules are.

View modifications are not allowed if

View was created from more than one table.
View was created from a non-updatable view.
Any column in the view is derived or is an aggregate function.

Furthermore, inserts are not allowed if

Any column in the base table was declared as NOT NULL is not present in the view.

Create a view that contains each employees' surname, salary and department name.

CREATE VIEW empdepsal(ename, sal, dept)
AS
SELECT e.surname, j.salary, d.dname
FROM employee e, jobhistory j, department d
WHERE e.empno = j.empno
AND e.depno = d.depno
AND enddate IS NULL

Page 164 of 181Database System Notes V3.2

31/08/2005

Removal of a VIEW

This is just the same syntax as dropping a TABLE.

DROP VIEW empdepsal

differences between sqlplus and activeSQL

There is one important difference between sqlplus and activeSQL. In sqlplus, you have your OWN
oracle account, and you do not share this with anyone. When you create a view in Oracle is stays
around until you explicitly delete it. Thus you can reuse a view for more than one purpose without
having to redefine it.

In activeSQL, you share your namespace with all the other activeSQL users. ActiveSQL tries to
make sure that this never causes interference involving the other users. However, one thing it does
do is insist that your views are deleted immediately after they are used. If you run a query involving
a view, activeSQL will delete that view automatically on your behalf before displaying the results of
your query. Thus to use a view in two questions, you must create the view in EACH question. You
will not lose marks for reusing a view in two or more questions by copying the view definition into
the answer to all the questions. Try to come up with viewname which are likely to be different to
your colleagues names - identical name for views are unlikely to cause any problems but different
name will definitely NOT cause problems.

No matter what interface you use, it is good practice to delete a view once you are finished with it.
Forgetting to delete the view yourself will cost you marks.

Outer Join

One problem which comes up frequently in advanced SQL is losing data in a query where some of
the relationships involve NULL. For instance, lets say we want to list ALL empnos in the employee
table against how many courses they have been on.

Initially you might simply say:

select employee.empno,count(courseno)
from employee,empcourse
where employee.empno = empcourse.empno
group by employee.empno;

It looks very reasonable, but running the query produces:

EMPNO COUNT(COURSENO)
1 2
2 2
7 2
8 2
14 2
15 2
19 2
21 1
22 2

Page 165 of 181Database System Notes V3.2

31/08/2005

So what happened to all the other empno entries? For instance there is an employee 3, but it does not
appear in the table. As employee 3 has not been on any courses, empcourse.empno does not have the
value 3, and thus that row of employee is ignored. Whats the solution? There are two possibilities,
one using UNION and one (much nicer) solution using OUTER JOIN.

With UNION, we can join together two separate queries and make it appear like a single result table.
We can use this to join two queries together, one which is the query above with all the employees
with courses, and one query which is all the employees who never did courses. This second query
must return the empno attribute, and also a count attribute with a value of 0 (these employees have
done 0 courses). Actually, this is quite easy:

select employee.empno,0
from employee
where employee.empno not in
 (select empno from empcourse)
group by employee.empno;

To join them together list both queries one after another with the word UNION between them. Thus:

select employee.empno,count(courseno)
from employee,empcourse
where employee.empno = empcourse.empno
group by employee.empno
UNION
select employee.empno,0
from employee
where employee.empno not in
 (select empno from empcourse)
group by employee.empno;

Magic!

Although this works well, it is rather complex and long. Another way is to use OUTER JOIN. This is
the same as a normal join, except we warn Oracle that, if there is no value at one side of the join, just
pretend there is one. Where we want to allow values to be missing the Oracle syntax as (+) after the
attribute which can have no value.

In our case the problem is with

employee.empno = empcourse.empno

Here, empcourse.empno does not have all the values of employee.empno, and to make the query
work we tell oracle to keep going even if there is no equivalent empcourse.empno value. Thus we
change this line to:

employee.empno = empcourse.empno(+)

The whole query changes to :

select employee.empno,count(courseno)
from employee,empcourse
where employee.empno = empcourse.empno(+)
group by employee.empno;

You could have also wrote:

 where empcourse.empno(+) = employee.empno

Page 166 of 181Database System Notes V3.2

31/08/2005

There are complex rules as to how many (+) symbols you can put to the left of an = sign, but in
general you can put as many as you like on the right hand side. Trying to utilise more than one (+) in
a single SQL statement is strictly for experts only. It is easy to get into a position where Oracle
refuses to execute such queries!

As you can see, the is only a few characters longer than the original broken query, and thus is much
less complex than the UNION solution. The problem people find with OUTER JOIN is knowing
where to put the (+). If you are going to use OUTER JOIN do not just randomly put (+) in your
query and then move it until it works. Try to have a logical approach to its placement, or you will be
sorry!

Arithmetic operation on dates etc.

Oracle allows you to do simple arithmetic operations on dates.

SYSDATE returns the current date and time.

You can add and subtract number constants as well as other dates from dates. Oracle interprets
number constants as numbers of days. For example, SYSDATE -7 is one week ago.

ADD_MONTHS(d, n) returns the date plus n months.

LAST_DAY(d) returns the last day of the month that contains the date d.

MONTHS_BETWEEN(d1,d2) returns the number of months between dates d1 and d2. If d1 is later
than d2, the result is positive, if earlier it is negative. If d1 and d2 are the same days of the month or
both the last days of the month the result is an integer otherwise there is also a fractional part.

To calculate the number of days left in a month.

SELECT SYSDATE, LAST_DAY(SYSDATE) "Last", LAST_DAY(SYSDATE) - SYSDATE "Days left"
FROM DUAL;

Dual is a table automatically created by Oracle along with the data dictionary. It is accessible to all
users. It has one column DUMMY and one row with the value X. Selecting from the dual table is
useful for computing a constant expression with the SELECT command because dual has only one
row the constant is returned only once.

How many days has each employee been in his or her current job?

SELECT empno, SYSDATE - startdate "No of days"
FROM jobhistory
WHERE enddate IS NULL;

This works out the number of days between the startdate and today's date. The heading of the
column is No of days. However there is also a fractional part which is the fraction of the day.

ROUND(d) returns d rounded to the nearest day.

How many days has each employee been in his or her current job?

SELECT empno, ROUND(SYSDATE - startdate) "No of days"
FROM jobhistory
WHERE enddate IS NULL;

Page 167 of 181Database System Notes V3.2

31/08/2005

Rounds the result to the nearest day.

List how many months each employee has been in his or her current job?

SELECT empno, MONTHS_BETWEEN(SYSDATE , startdate) "No of months"
FROM jobhistory
WHERE enddate IS NULL;

NVL function

NVL returns the normal set function result unless that result is NULL, when it returns the second
argument in the NVL function.

To list employees' positions with end dates if not null or else today's date :-

SELECT empno, NVL(enddate, SYSDATE)
FROM jobhistory

Page 168 of 181Database System Notes V3.2

31/08/2005

ER Diagram for JOBS
There are a number of tutorial questions on the JOBS database. This can be described with the
following ER diagram:

Figure : ER diagram for the JOBS database

Page 169 of 181Database System Notes V3.2

31/08/2005

ER Diagram for Dressmaker
Contents

JMCUST
DRESS_ORDER
ORDER_LINE
QUANTITIES
GARMENT
MATERIAL
CONSTRUCTION
DRESSMAKER

There are a number of tutorial questions on the DRESSMAKER database. This can be described
with the following ER diagram:

Figure: Dressmaker ER Diagram

The dressmaker tables make use of composite primary keys, and therefore has composite foreign
keys. A relationship involving a composite key must include all the attributes involved. For instance,
a query needing ORDER_LINE, CONSTRUCTION, and DRESSMAKER would need something
like:

SELECT *
FROM order_line JOIN construction ON (
 order_line.order_ref = construction.order_ref
 AND order_line.line_no = construction.line_ref
) JOIN dressmaker ON (dressmaker.d_no = construction.maker)
;

JMCUST
This table contains information on the customers who use the dressmaker company, including a
unique id, the customer name and house number, and the customer's post code.

Page 170 of 181Database System Notes V3.2

31/08/2005

DRESS_ORDER
If a customer makes an order, it is recorded here. Each order has an order number, and an associated
customer number. The date of the order is also recorded. Once all the items in the order have been
completed, COMPLETED is set to Y, otherwise it is N. Only uppercase Y or N is used.

ORDER_LINE
Each order that a customer places is made up of 1 or more garments. Each garment of the order is
recorded in this table. It is called ORDER_LINE as it represents a single element or line of an order
sheet. Each garment in an order is given a unique number (line_no). ORDER_REF is the order
number. Garments to be build need a style (trousers, shirts, etc), a size (10,12,etc) and a material
(silk, cotton, etc).

QUANTITIES
QUANTITIES explains how much material is needed to build a particular garment. For instance
style 4 in size 16 requires 1.5 linear feet of material. Material is sold in a roll, and so someone needs
to measure 1.5 feet off the roll and give that to a dressmaker to make the garment.

GARMENT
Each garment has a style number, a description (e.g. trousers), a labour cost and some dressmaker
notes (called notions). The labour cost indicates how much money has to be payed to a dressmaker
for the time required to make this garment.

MATERIAL
The material to make a garment has a material number, and a fabric name (e.g. cotton). Each fabric
may be available in different colours and fabric patterns (like stripes). The COST is the price of the
material in linear feet. So one foot off the role of material costs so many pounds.

CONSTRUCTION
This allocates each item in an order to a particular dressmaker. It includes a start date (when it was
allocated) and has a finish date of NULL when it is not finished, or the date when it was finished.

DRESSMAKER
Each dressmaker who works for the company is recorded here. Each dressmaker has a name and
unique id, plus a house number and a post code. The dressmakers are all freelance, and thus get paid
only on completion of a garment.

Page 171 of 181Database System Notes V3.2

31/08/2005

ER Diagram for Musician
There are a number of tutorial questions on the MUSICIAN database. This can be described with the
following ER diagram:

Figure : ER Diagram for the MUSICIANS database

Page 172 of 181Database System Notes V3.2

31/08/2005

Tutorial - ER Diagram Examples 1-2
Contents

Example 1
Example 2

Example 1
A publishing company produces scientific books on various subjects. The books are written by
authors who specialize in one particular subject. The company employs editors who, not necessarily
being specialists in a particular area, each take sole responsibility for editing one or more
publications. A publication covers essentially one of the specialist subjects and is normally written
by a single author. When writing a particular book, each author works with on editor, but may
submit another work for publication to be supervised by other editors. To improve their
competitiveness, the company tries to employ a variety of authors, more than one author being a
specialist in a particular subject.

Example 2
A General Hospital consists of a number of specialized wards (such as Maternity, Paediatry,
Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of
their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal
details of every patient are recorded. A separate register is to be held to store the information of the
tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for
each patient. Each patient is assigned to one leading consultant but may be examined by another
doctor, if required. Doctors are specialists in some branch of medicine and may be leading
consultants for a number of patients, not necessarily from the same ward.

Page 173 of 181Database System Notes V3.2

31/08/2005

Tutorial - ER Diagram Examples 3-5
Contents

Example 3
Example 4
Example 5

Example 3
A database is to be designed for a Car Rental Co. (CRC). The information required includes a
description of cars, subcontractors (i.e. garages), company expenditures, company revenues and
customers. Cars are to be described by such data as: make, model, year of production, engine size,
fuel type, number of passengers, registration number, purchase price, purchase date, rent price and
insurance details. It is the company policy not to keep any car for a period exceeding one year. All
major repairs and maintenance are done by subcontractors (i.e. franchised garages), with whom CRC
has long-term agreements. Therefore the data about garages to be kept in the database includes
garage names, addressees, range of services and the like. Some garages require payments
immediately after a repair has been made; with others CRC has made arrangements for credit
facilities. Company expenditures are to be registered for all outgoings connected with purchases,
repairs, maintenance, insurance etc. Similarly the cash inflow coming from all sources - car hire, car
sales, insurance claims - must be kept of file.CRC maintains a reasonably stable client base. For this
privileged category of customers special credit card facilities are provided. These customers may
also book in advance a particular car. These reservations can be made for any period of time up to
one month. Casual customers must pay a deposit for an estimated time of rental, unless they wish to
pay by credit card. All major credit cards care accepted. Personal details (such as name, address,
telephone number, driving licence, number) about each customer are kept in the database.

Example 4
A database is to be designed for a college to monitor students' progress throughout their course of
study. The students are reading for a degree (such as BA, BA(Hons) MSc, etc) within the framework
of the modular system. The college provides a number of module, each being characterised by its
code , title, credit value, module leader, teaching staff and the department they come from. A module
is co-ordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer
may teach (and be a module leader for) more than one module. Students are free to choose any
module they wish but the following rules must be observed: some modules require pre-requisites
modules and some degree programmes have compulsory modules. The database is also to contain
some information about students including their numbers, names, addresses, degrees they read for,
and their past performance (i.e. modules taken and examination results).

Example 5
A relational database is to be designed for a medium sized Company dealing with industrial
applications of computers. The Company delivers various products to its customers ranging from a
single application program through to complete installation of hardware with customized software.
The Company employs various experts, consultants and supporting staff. All personnel are employed
on long-term basis, i.e. there are no short-term or temporary staff. Although the Company is
somehow structured for administrative purposes (that is, it is divided into departments headed by

Page 174 of 181Database System Notes V3.2

31/08/2005

department managers) all projects are carried out in an inter-disciplinary way. For each project a
project team is selected, grouping employees from different departments, and a Project Manager
(also an employee of the Company) is appointed who is entirely and exclusively responsible for the
control of the project, quite independently of the Company's hierarchy. The following is a brief
statement of some facts and policies adopted by the Company.

Page 175 of 181Database System Notes V3.2

31/08/2005

Normalisation Tutorial
1. A college keeps details about a student and the various modules the student studied. These

details comprise
regno - registration number
n - student name
a - student address
tno - tutor number
tna - tutor name
dc - diploma code
dn - diploma name
mc - module code
mn - module name
res - module exam result

where

details(regno,n,a,tno,tna,dc,dn,(mc,mn,res))
 dc -> dn
 tno -> tna
 mc,mn -> res
 n -> a
 mc -> mn

Reduce the relation DETAILS to third normal form.

2. Classify the following relations as either UNNORMALISED, 1NF, 2NF or 3NF. If the relation
is not in 3NF, normalise the relation to 3NF.

1. EMPLOYEE(empno,empname,jobcode)
 empno -> empname
 empno -> jobcode

2. EMPLOYEE(empno,empname,(jobcode,years))
 empno -> empname
 empno,jobcode -> years

3. EMPLOYEE(empno,empname,jobcode,jobdesc)
 empno -> empname,jobcode
 jobcode -> jobdesc

4. EMPLOYEE(empno,empname,project,hoursworked)
 empno -> empname
 empno,project -> hoursworked

Page 176 of 181Database System Notes V3.2

31/08/2005

3. Identify any repeating groups and functional dependences in the PATIENT relation. Show all
the intermediate steps to derive the third normal form for PATIENT.

PATIENT(patno,patname,gpno,gpname,appdate,consultant,conaddr,sample)

4. Reduce the following to BCNF, showing all the steps involved.

Supplier(sno,sname,saddress,(partno, partdesc,(custid,custname,custaddr,quan
 sno -> sname,saddr
 sno,partno -> partdesc
 sno,partno,custid -> quantity
 sname -> sno
 custid -> custname,custaddr

Suppliers supply many parts to many customers. Each customer deals with only one supplier.
Supplier names are unique. Customer names are not unique.

5. Normalise the following relation to 3NF showing all the steps involved.

GP(gpno,cpname,gpadd,(patno,patname,patadd,patdob,(apptdate,apptime,diagnosi
 gpno -> gpname,gpadd
 patno -> patname,patadd, patdob
 patno,apptdate -> apptime,diagnosis
 diagnosis -> treatment

patno patname gpno gpname appdate consultant conaddr sample

01027 Grist 919 Robinson
3/9/2004 Farnes Acadia Rd blood
20/12/2004 Farnes Acadia Rd none
10/10/2004 Edwards Beech Ave urine

08023 Daniels 818 Seymour
3/9/2004 Farnes Acadia Rd none
3/9/2004 Russ Fir St sputum

191146 Falken 717 Ibbotson 4/10/2004 Russ Fir St blood
001239 Burgess 818 Seymour 5/6/2004 Russ Fir St sputum
007249 Lynch 717 Ibbotson 9/11/2004 Edwards Beach Ave none

Page 177 of 181Database System Notes V3.2

31/08/2005

6. The table below shows an extract from a tour operator's data on travel agent bookings. Derive
the third normal form of the data, showing all the intermediate steps.

7. A software consulting firm wishes to keep the following data for an employee and costing
database:

employee number
employee name
employee address
salary
current job code
job history (job promotion code + year)
office location
telephone number
project number
project name
task number
task name
project budget
task expendature to date
department number
department name

There are none, one or mor ejob promotion code/year entries per employee. The office
location uniquely depends on the telephone number, and there may be more than one
employee using the same telephone and more than one telephone in the one office. Tasks are
numbered uniquely only within each project. An employee may be concurrently assigned to
more than one project and task, but belongs to one department. Reduce this data to third
normal form.

batchno agentno agent name holiday
code cost quantity

booked
airport

code
airport
name

1 76 Bairns travel
B563 363 10 1 Luton
B248 248 20 12 Edinburgh
B428 322 18 11 Glasgow

2 142 Active
Holidays

B563 363 15 1 Luton
C930 568 2 14 Newcastle
A270 972 1 14 Newcastle
B728 248 5 12 Edinburgh

3 76 Bairns travel
C930 568 11 1 Luton
A430 279 15 11 Glasgow

Page 178 of 181Database System Notes V3.2

31/08/2005

Chapter 10 - Appendix
This is a collection of some useful reference sections

changelog - Changes to the document
Teaching Plan - A possible teaching plan

Page 179 of 181Database System Notes V3.2

31/08/2005

Changes
Contents

Changes in V3.2
Changes in V3.1
Changes in V3.0

This is the changelog for this document

Changes in V3.2
General tidy and fixed broken characters in Relational Algebra section.

Changes in V3.1
Fixes to typos and section nesting.
Image figures are now handled in a more XHTML way.

Changes in V3.0
Order of SQL and Data analysis sections switched around
Embedded SQL rewritten as Application Links with considerable changes
Introduction changed to have an intro to "what is a table"
The Unit groupings have been removed
SQL chapters have been completely rewritten and expanded
Removed: Data Dictionary (some metadata in new section)
Removed: DBA (some DBA in new section)
New: DBMS Implementation. Uses some rewritten notes from Storage Structures
New: Metadata. Includes material rewritten from security, plus is expanded to discuss
metadata issues and some aspects of the DBA.
Changes: Normalisation loses 4NF and 5NF, but gains a simple in-class example
Exam walkthrough and exam advice removed. This is best done by picking up a past paper
and working through that, or using the online tests. Do not use the old slides related to the
exam walkthrough (which contained things like assertion/reason questions), as they are badly
dated and misleading.
The notes are not now available as a word document. All the notes are kept in html. I will
endevour to produce a good quality printable output of the notes as a pdf, but this technology
is limited at the moment.

Page 180 of 181Database System Notes V3.2

31/08/2005

Plan

CO22001 - Teaching Plan
This is a mock teaching plan for this module. The teaching plan which you actually follow may be
different from this.

Week No Lecture A Mini A Lecture B Mini B Tutorial
01 Introduction SQL 1 Logging on / SQL1
02 ER 1 SQL 2 SQL2
03 ER 2 SQL 3 SQL3
04 ER 3 SQL 4 ER1-2 SQL4
05 ER 4 Norm1 ER Diagram 1 + 2
06 Trans Norm2 C/Work
07 RelAl1 Concur C/Work
08 RelAL2 Recovery C/Work
09 Reading Week Not Supervised
10 DB Security App Links ER3-5 Normalisation
11 Exam Preperation DBMS Implement Spare
12 Discuss SQL Assess Revision Not-Used
13 Revision Week Not Supervised
14 Exam Week 1
15 Exam Week 2

Page 181 of 181Database System Notes V3.2

31/08/2005

