Database System Notes V3.2 Page 1 of 181

NAPIER UNIVERSITY
EDINBURGH

Database Systems
Student Notes
C0O22001/CO72010

Version 3.2

SCHOOL OF COMPUTING

31/08/2005

Database System Notes V3.2 Page 2 of 181

Database eLearning

This site is focused on online database learning, revolving around an electronic textbook. Chapter
links to the textbook are as follows:

Introduction

Database Analysis and ER Modelling

SQL

Normalisation

Relational Algebra

Concurrency, Transactions, and Implementations
Programming with SQL

Metadata, Security, and the DBA

Offline Tutorials

Appendix

Other Sites: Linux Admin Tutorials

31/08/2005

Database System Notes V3.2 Page 3 of 181

Chapter 1 - Introduction

So you want to learn about databases? This document is a good starting point, and is used at
University level to teach computing students. Use it in conjunction with the online resources, like the
quiz and the SQL tutorial environment.

o This Document
e Introduction

31/08/2005

Database System Notes V3.2 Page 4 of 181

This Document

Welcome to Database Resources. I have been authoring online material to teach databases for many
years, and this site is the latest attempt to bring online database learning to the public.

The site revolves around this electronic document, which contains all the theory required to pass a
introduction to databases module at University level. The site also has practical exercises, including
an online quiz for testing your knowledge, actual University exam papers for you to formally test
yourself and gain exam experience, and an online SQL environment for executing your own SQL
from the safety of your own home.

For reference, the version of the notes you see on this site are based on v3.1 of the printed notes.

The SQL environment gives you access to an Oracle database, and allows you to write your own
SQL and execute it as part of an extensive practical exercise. Free registration allows you to revisit
the tutorials and continue on from where you left off.

There are additional resources for those involved in teaching databases, including a downloadable
version of the notes and powerpoint slides for formal lectures.

Usage

This document is for use with a variety of University courses running throughout the world. The
document forms a good introduction to the basics of database systems for university students. At
Napier University the modules which use this material include:

e C0O22001 — Database Systems. This is a ond year module for computing students.

e (CS22010 — Database Systems 2. This is the old name for CO22001.

e CO72010 — Database Systems. This is a postgraduate module taught on some of our
postgraduate conversion courses.

You are free to make use of this site for personal learning purposes only. To make use of the material
found here for financial gain you must gain written permission from myself. Suggestions and

corrections welcomed.

Dr Gordon Russell (g.russell@napier.ac.uk)

Acknowledgments:

Andrew Cumming
John Old

31/08/2005

Database System Notes V3.2 Page 5 of 181

Introduction

Contents

The Database Approach
User Types
Database Architecture
Three level database architecture
External View
Conceptual View
Internal View
o Mappings
DBMS
Database Administrator
Facilities and Limitations
o Data Independence
o Data Redundancy

o Data Integrity

o

O O

o

Relational database systems have become increasingly popular since the late 1970's. They offer a
powerful method for storing data in an application-independent manner. This means that for many
enterprises the database is at the core of the I.T. strategy. Developments can progress around a
relatively stable database structure which is secure, reliable, efficient, and transparent.

In early systems, each suite of application programs had its own independent master file. The
duplication of data over master files could lead to inconsistent data.

Efforts to use a common master file for a number of application programs resulted in problems of
integrity and security. The production of new application programs could require amendments to
existing application programs, resulting in ‘unproductive maintenance'.

Data structuring techniques, developed to exploit random access storage devices, increased the
complexity of the insert, delete and update operations on data. As a first step towards a DBMS,
packages of subroutines were introduced to reduce programmer effort in maintaining these data
structures. However, the use of these packages still requires knowledge of the physical organization
of the data.

The Database Approach

A database system is a computer-based system to record and maintain information. The information
concerned can be anything of significance to the organisation for whose use it is intended.

The contents of a database can hold a variety of different things. To make database design more
straight-forward, databases contents are divided up into two concepts:

e Schema
o Data

The Schema is the structure of data, whereas the Data are the "facts". Schema can be complex to
understand to begin with, but really indicates the rules which the Data must obey.

31/08/2005

Database System Notes V3.2 Page 6 of 181

Imagine a case where we want to store facts about employees in a company. Such facts could include
their name, address, date of birth, and salary. In a database all the information on all employees
would be held in a single storage "container", called a table. This table is a tabular object like a
spreadsheet page, with different employees as the rows, and the facts (e.g. their names) as columns...
Let's call this table EMP, and it could look something like:

| Name || Address ||Date of Birth||Salary|
lim Smith |[1 Apple Lane |[1/3/1991 |[11000 |
Don Greg |[5PearSt [7/9/1992 13000 |
[Bob Roberts|[2 Plumb Road|[3/2/1990 [112000 |

From this information the schema would define that EMP has four components,
"NAME","ADDRESS","DOB","SALARY". As designers we can call the columns what we like, but
making them meaningful helps. In addition to the name, we want to try and make sure that people
dont accidentally store a name in the DOB column, or some other silly error. Protecting the database
against rubbish data is one of the most important database design steps, and is what much of this
course is about. From what we know about the facts, we can say things like:

e NAME is a string, and needs to hold at least 12 characters.

e ADDRESS is a string, and needs to hold at least 12 characters.

DOB is a date... The company forbids people over 100 years old or younger than 18 years old
working for them.

e SALARY is a number. It must be greater than zero.

Such rules can be enforced by a database. During the design phase of a database schema these and
more complex rules are identified and where possible implemented. The more rules the harder it is to
enter poor quality data.

User Types

When considering users of a Database system, there are three broad classes to consider:

1. the application programmer, responsible for writing programs in some high-level language
such as COBOL, C++, etc.

2. the end-user, who accesses the database via a query language

3. the database administrator (DBA), who controls all operations on the database

Database Architecture

DBMSs do not all conform to the same architecture.

e The three-level architecture forms the basis of modern database architectures.

e this is in agreement with the ANSI/SPARC study group on Database Management Systems.
ANSI/SPARC is the American National Standards Institute/Standard Planning and
Requirement Committee).

The architecture for DBMSs is divided into three general levels:

external

conceptual

internal

Three level database architecture

31/08/2005

Database System Notes V3.2 Page 7 of 181

External View
(Individual user view)

Conceptual Lewel
(community USer vew)

Internal Lewel
{Storage wiew)

Figure 1: Three level architecture

—

the external level : concerned with the way individual users see the data

2. the conceptual level : can be regarded as a community user view a formal description of data
of interest to the organisation, independent of any storage considerations.

3. the internal level : concerned with the way in which the data is actually stored

Figure : How the three level architecture works

External View

A user is anyone who needs to access some portion of the data. They may range from application
programmers to casual users with adhoc queries. Each user has a language at his/her disposal.

The application programmer may use a high level language (e.g. COBOL) while the casual user will
probably use a query language.

Regardless of the language used, it will include a data sublanguage DSL which is that subset of the
language which is concerned with storage and retrieval of information in the database and may or

31/08/2005

Database System Notes V3.2 Page 8 of 181

may not be apparent to the user.
A DSL is a combination of two languages:

e a data definition language (DDL) - provides for the definition or description of database
objects

¢ a data manipulation language (DML) - supports the manipulation or processing of database
objects.

Each user sees the data in terms of an external view: Defined by an external schema, consisting
basically of descriptions of each of the various types of external record in that external view, and
also a definition of the mapping between the external schema and the underlying conceptual schema.

Conceptual View

e An abstract representation of the entire information content of the database.

o It is in general a view of the data as it actually is, that is, it is a ‘model' of the "realworld'.

¢ It consists of multiple occurrences of multiple types of conceptual record, defined in the
conceptual schema.

e To achieve data independence, the definitions of conceptual records must involve information
content only.

e storage structure is ignored

e access strategy is ignored

¢ In addition to definitions, the conceptual schema contains authorisation and validation
procedures.

Internal View

The internal view is a low-level representation of the entire database consisting of multiple
occurrences of multiple types of internal (stored) records.

It is however at one remove from the physical level since it does not deal in terms of physical
records or blocks nor with any device specific constraints such as cylinder or track sizes. Details of
mapping to physical storage is highly implementation specific and are not expressed in the three-
level architecture.

The internal view described by the internal schema:

defines the various types of stored record

what indices exist

how stored fields are represented

what physical sequence the stored records are in

In effect the internal schema is the storage structure definition.
Mappings

e The conceptual/internal mapping:
o defines conceptual and internal view correspondence
o specifies mapping from conceptual records to their stored counterparts
¢ An external/conceptual mapping:
o defines a particular external and conceptual view correspondence
e A change to the storage structure definition means that the conceptual/internal mapping must

31/08/2005

Database System Notes V3.2 Page 9 of 181

be changed accordingly, so that the conceptual schema may remain invariant, achieving
physical data independence.

¢ A change to the conceptual definition means that the conceptual/external mapping must be
changed accordingly, so that the external schema may remain invariant, achieving logical data
independence.

DBMS

The database management system (DBMS) is the software that:

¢ handles all access to the database
e is responsible for applying the authorisation checks and validation procedures

Conceptually what happens is:

1. A user issues an access request, using some particular DML.

2. The DBMS intercepts the request and interprets it.

3. The DBMS inspects in turn the external schema, the external/conceptual mapping, the
conceptual schema, the conceptual internal mapping, and the storage structure definition.

4. The DBMS performs the necessary operations on the stored database.

Database Administrator

The database administrator (DBA) is the person (or group of people) responsible for overall control
of the database system. The DBA's responsibilities include the following:

¢ deciding the information content of the database, i.e. identifying the entities of interest to the
enterprise and the information to be recorded about those entities. This is defined by writing
the conceptual schema using the DDL

o deciding the storage structure and access strategy, i.e. how the data is to be represented by
writing the storage structure definition. The associated internal/conceptual schema must also
be specified using the DDL

e liaising with users, i.e. to ensure that the data they require is available and to write the
necessary external schemas and conceptual/external mapping (again using DDL)

e defining authorisation checks and validation procedures. Authorisation checks and validation
procedures are extensions to the conceptual schema and can be specified using the DDL

¢ defining a strategy for backup and recovery. For example periodic dumping of the database to
a backup tape and procedures for reloading the database for backup. Use of a log file where
each log record contains the values for database items before and after a change and can be
used for recovery purposes

e monitoring performance and responding to changes in requirements, i.e. changing details of
storage and access thereby organising the system so as to get the performance that is "best for
the enterprise’'

Facilities and Limitations

The facilities offered by DBMS vary a great deal, depending on their level of sophistication. In
general, however, a good DBMS should provide the following advantages over a conventional
system:

e Independence of data and program - This is a prime advantage of a database. Both the
database and the user program can be altered independently of each other thus saving time and

31/08/2005

Database System Notes V3.2 Page 10 of 181

money which would be required to retain consistency.

e Data shareability and nonredundance of data - The ideal situation is to enable applications to
share an integrated database containing all the data needed by the applications and thus
eliminate as much as possible the need to store data redundantly.

o Integrity - With many different users sharing various portions of the database, it is impossible
for each user to be responsible for the consistency of the values in the database and for
maintaining the relationships of the user data items to all other data item, some of which may
be unknown or even prohibited for the user to access.

o Centralised control - With central control of the database, the DBA can ensure that standards
are followed in the representation of data.

¢ Security - Having control over the database the DBA can ensure that access to the database is
through proper channels and can define the access rights of any user to any data items or
defined subset of the database. The security system must prevent corruption of the existing
data either accidently or maliciously.

e Performance and Efficiency - In view of the size of databases and of demanding database
accessing requirements, good performance and efficiency are major requirements. Knowing
the overall requirements of the organisation, as opposed to the requirements of any individual
user, the DBA can structure the database system to provide an overall service that is "best for
the enterprise'.

Data Independence

¢ This is a prime advantage of a database. Both the database and the user program can be altered
independently of each other.
¢ In a conventional system applications are datadependent. This means that the way in which the
data is organised in secondary storage and the way in which it is accessed are both dictated by
the requirements of the application, and, moreover, that knowledge of the data organisation
and access technique is built into the application logic.
e For example, if a file is stored in indexed sequential form then an application must know
o that the index exists
o the file sequence (as defined by the index)

The internal structure of the application will be built around this knowledge. If, for example, the file
was to be replaced by a hash-addressed file, major modifications would have to be made to the
application.

Such an application is data-dependent - it is impossible to change the storage structure (how the data
is physically recorded) or the access strategy (how it is accessed) without affecting the application,
probably drastically. The portions of the application requiring alteration are those that communicate
with the file handling software - the difficulties involved are quite irrelevant to the problem the
application was written to solve.

¢ it is undesirable to allow applications to be data-dependent - different applications will need
different views of the same data.

¢ the DBA must have the freedom to change storage structure or access strategy in response to
changing requirements without having to modify existing applications.

e Data independence can be defines as
"The immunity of applications to change in storage structure and access strategy'.

Data Redundancy

In non-database systems each application has its own private files. This can often lead to redundancy
in stored data, with resultant waste in storage space. In a database the data is integrated.

31/08/2005

Database System Notes V3.2 Page 11 of 181

The database may be thought of as a unification of several otherwise distinct data files, with any
redundancy among those files partially or wholly eliminated.

Data integration is generally regarded as an important characteristic of a database. The avoidance of
redundancy should be an aim, however, the vigour with which this aim should be pursued is open to
question.

Redundancy is

e direct if a value is a copy of another
¢ indirect if the value can be derived from other values:
o simplifies retrieval but complicates update
o conversely integration makes retrieval slow and updates easier
e Data redundancy can lead to inconsistency in the database unless controlled.
o the system should be aware of any data duplication - the system is responsible for ensuring
updates are carried out correctly.
¢ a DB with uncontrolled redundancy can be in an inconsistent state - it can supply incorrect or
conflicting information
e a given fact represented by a single entry cannot result in inconsistency - few systems are
capable of propagating updates i.e. most systems do not support controlled redundancy.

Data Integrity
This describes the problem of ensuring that the data in the database is accurate...

e inconsistencies between two entries representing the same “fact' give an example of lack of
integrity (caused by redundancy in the database).

e integrity constraints can be viewed as a set of assertions to be obeyed when updating a DB to
preserve an error-free state.

¢ even if redundancy is eliminated, the DB may still contain incorrect data.

¢ integrity checks which are important are checks on data items and record types.

Integrity checks on data items can be divided into 4 groups:

1. type checks
o e.g. ensuring a numeric field is numeric and not a character - this check should be
performed automatically by the DBMS.
2. redundancy checks
o direct or indirect (see data redundancy) - this check is not automatic in most cases.
3. range checks
o e.g. to ensure a data item value falls within a specified range of values, such as checking
dates so that say (age > 0 AND age < 110).
4. comparison checks
o in this check a function of a set of data item values is compared against a function of
another set of data item values. For example, the max salary for a given set of
employees must be less than the min salary for the set of employees on a higher salary
scale.

A record type may have constraints on the total number of occurrences, or on the insertions and
deletions of records. For example in a patient database there may be a limit on the number of xray
results for each patient or the details of a patients visit to hospital must be kept for a minimum of 5
years before it can be deleted

e Centralized control of the database helps maintain integrity, and permits the DBA to define

31/08/2005

Database System Notes V3.2 Page 12 of 181

validation procedures to be carried out whenever any update operation is attempted (update
covers modification, creation and deletion).

¢ Integrity is important in a database system - an application run without validation procedures
can produce erroneous data which can then affect other applications using that data.

31/08/2005

Database System Notes V3.2 Page 13 of 181

Chapter 2 - Database Analysis

Basic database analysis techniques, Entity Relationship modelling, and mapping ER diagrams to
relations.

Database Analysis

Entity Relationship Modelling - 2
Mapping ER Models into Relations
Advanced ER Mapping

31/08/2005

Database System Notes V3.2 Page 14 of 181

Database Analysis

Contents

Introduction
Database Analysis Life Cycle
Three-level Database Model
Basics

o Entities

o Attribute

= Keys

o Relationships
Degree of a Relationship
Degree of a Relationship
Replacing ternary relationships

Cardinality
Optionality
Entity Sets

Confirming Correctness
Deriving the relationship parameters

Redundant relationships

Redundant relationships example
Splitting n:m Relationships

Splitting n:m Relationships - Example
Constructing an ER model

This unit it concerned with the process of taking a database specification from a customer and
implementing the underlying database structure necessary to support that specification.

Introduction

Data analysis is concerned with the NATURE and USE of data. It involves the identification of the
data elements which are needed to support the data processing system of the organization, the
placing of these elements into logical groups and the definition of the relationships between the
resulting groups.

Other approaches, e.g. D.F.Ds and Flowcharts, have been concerned with the flow of data-datatflow
methodologies. Data analysis is one of several data structure based methodologies Jackson SP/D is
another.

Systems analysts often, in practice, go directly from fact finding to implementation dependent data
analysis. Their assumptions about the usage of properties of and relationships between data elements
are embodied directly in record and file designs and computer procedure specifications. The
introduction of Database Management Systems (DBMS) has encouraged a higher level of analysis,
where the data elements are defined by a logical model or “schema' (conceptual schema). When
discussing the schema in the context of a DBMS, the effects of alternative designs on the efficiency
or ease of implementation is considered, i.e. the analysis is still somewhat implementation
dependent. If we consider the data relationships, usages and properties that are important to the
business without regard to their representation in a particular computerised system using particular
software, we have what we are concerned with, implementationindependent data analysis.

31/08/2005

Database System Notes V3.2 Page 15 of 181

It is fair to ask why data analysis should be done if it is possible, in practice to go straight to a
computerised system design. Data analysis is time consuming; it throws up a lot of questions.
Implementation may be slowed down while the answers are sought. It is more expedient to have an
experienced analyst “get on with the job' and come up with a design straight away. The main
difference is that data analysis is more likely to result in a design which meets both present and
future requirements, being more easily adapted to changes in the business or in the computing
equipment. It can also be argued that it tends to ensure that policy questions concerning the
organisations' data are answered by the managers of the organisation, not by the systems analysts.
Data analysis may be thought of as the ‘slow and careful' approach, whereas omitting this step is
‘quick and dirty".

From another viewpoint, data analysis provides useful insights for general design principals which
will benefit the trainee analyst even if he finally settles for a "quick and dirty' solution.

The development of techniques of data analysis have helped to understand the structure and meaning
of data in organisations. Data analysis techniques can be used as the first step of extrapolating the
complexities of the real world into a model that can be held on a computer and be accessed by many
users. The data can be gathered by conventional methods such as interviewing people in the
organisation and studying documents. The facts can be represented as objects of interest. There are a
number of documentation tools available for data analysis, such as entityrelationship diagrams.
These are useful aids to communication, help to ensure that the work is carried out in a thorough
manner, and ease the mapping processes that follow data analysis. Some of the documents can be
used as source documents for the data dictionary.

In data analysis we analyse the data and build a systems representation in the form of a data model
(conceptual). A conceptual data model specifies the structure of the data and the processes which use
that data.

Data Analysis = establishing the nature of data.

Functional Analysis = establishing the use of data.

However, since Data and Functional Analysis are so intermixed, we shall use the term Data Analysis
to cover both.

Building a model of an organisation is not easy. The whole organisation is too large as there will be
too many things to be modelled. It takes too long and does not achieve anything concrete like an
information system, and managers want tangible results fairly quickly. It is therefore the task of the
data analyst to model a particular view of the organisation, one which proves reasonable and
accurate for most applications and uses. Data has an intrinsic structure of its own, independent of
processing, reports formats etc. The data model seeks to make explicit that structure

Data analysis was described as establishing the nature and use of data.

Database Analysis Life Cycle

31/08/2005

Database System Notes V3.2 Page 16 of 181

Database study

Database design

Implementation and loading

Testing and evaluation

{Operation

maintenance and evolution

Figure : Database Analysis Life Cycle

When a database designer is approaching the problem of constructing a database system, the logical
steps followed is that of the database analysis life cycle:

e Database study - here the designer creates a written specification in words for the database
system to be built. This involves:

o analysing the company situation - is it an expanding company, dynamic in its
requirements, mature in nature, solid background in employee training for new internal
products, etc. These have an impact on how the specification is to be viewed.

o define problems and constraints - what is the situation currently? How does the
company deal with the task which the new database is to perform. Any issues around the
current method? What are the limits of the new system?

o define objectives - what is the new database system going to have to do, and in what
way must it be done. What information does the company want to store specifically, and
what does it want to calculate. How will the data evolve.

o define scope and boundaries - what is stored on this new database system, and what it
stored elsewhere. Will it interface to another database?

e Database Design - conceptual, logical, and physical design steps in taking specifications to
physical implementable designs. This is looked at more closely in a moment.

¢ Implementation and loading - it is quite possible that the database is to run on a machine
which as yet does not have a database management system running on it at the moment. If this
is the case one must be installed on that machine. Once a DBMS has been installed, the
database itself must be created within the DBMS. Finally, not all databases start completely
empty, and thus must be loaded with the initial data set (such as the current inventory, current
staff names, current customer details, etc).

e Testing and evaluation - the database, once implemented, must be tested against the
specification supplied by the client. It is also useful to test the database with the client using
mock data, as clients do not always have a full understanding of what they thing they have
specified and how it differs from what they have actually asked for! In addition, this step in the
life cycle offers the chance to the designer to fine-tune the system for best performance.
Finally, it is a good idea to evaluate the database in-situ, along with any linked applications.

e Operation - this step is where the system is actually in real usage by the company.

31/08/2005

Database System Notes V3.2 Page 17 of 181

e Maintenance and evolution - designers rarely get everything perfect first time, and it may be
the case that the company requests changes to fix problems with the system or to recommend
enhancements or new requirements.

o Commonly development takes place without change to the database structure. In elderly
systems the DB structure becomes fossilised.

Three-level Database Model

Often referred to as the three-level model, this is where the design moves from a written
specification taken from the real-world requirements to a physically-implementable design for a
specific DBMS. The three levels commonly referred to are "*Conceptual Design', "Data Model
Mapping', and "Physical Design'.

Mini-World View

Requirements Collection and
Analysis I %

Conceptual Design
Data Model Mapping
Physical Design -

e
Figure : Logic behind the three level architecture

The specification is usually in the form of a written document containing customer requirements,
mock reports, screen drawings and the like, written by the client to indicate the requirements which
the final system is to have. Often such data has to be collected together from a variety of internal
sources to the company and then analysed to see if the requirements are necessary, correct, and
efficient.

Once the Database requirements have been collated, the Conceptual Design phase takes the
requirements and produces a high-level data model of the database structure. In this module, we use
ER modelling to represent high-level data models, but there are other techniques. This model is
independent of the final DBMS which the database will be installed in.

Next, the Conceptual Design phase takes the high-level data model it taken and converted into a
conceptual schema, which is specific to a particular DBMS class (e.g. relational). For a relational

system, such as Oracle, an appropriate conceptual schema would be relations.

Finally, in the Physical Design phase the conceptual schema is converted into database internal
structures. This is specific to a particular DBMS product.

Basics
Entity Relationship (ER) modelling

e is a design tool
e is a graphical representation of the database system

31/08/2005

Database System Notes V3.2 Page 18 of 181

provides a high-level conceptual data model
supports the user's perception of the data

is DBMS and hardware independent

had many variants

is composed of entities, attributes, and relationships

Entities

An entity is any object in the system that we want to model and store information about
Individual objects are called entities

Groups of the same type of objects are called entity types or entity sets

Entities are represented by rectangles (either with round or square corners)

Lecturer Lecturer

Chen's notation other notations
Figure: Entities
e There are two types of entities; weak and strong entity types.
Attribute

All the data relating to an entity is held in its attributes.
An attribute is a property of an entity.
Each attribute can have any value from its domain.
Each entity within an entity type:
o May have any number of attributes.
o Can have different attribute values than that in any other entity.
o Have the same number of attributes.
Attributes can be
simple or composite
single-valued or multi-valued
Attributes can be shown on ER models
They appear inside ovals and are attached to their entity.
Note that entity types can have a large number of attributes... If all are shown then the
diagrams would be confusing. Only show an attribute if it adds information to the ER diagram,

or clarifies a point.

Lecturer

Figure : Attributes

Keys

31/08/2005

Database System Notes V3.2 Page 19 of 181

e A key is a data item that allows us to uniquely identify individual occurrences or an entity
type.

¢ A candidate key is an attribute or set of attributes that uniquely identifies individual
occurrences or an entity type.

e An entity type may have one or more possible candidate keys, the one which is selected is
known as the primary key.

¢ A composite key is a candidate key that consists of two or more attributes

e The name of each primary key attribute is underlined.

Relationships

e A relationship type is a meaningful association between entity types

e A relationship is an association of entities where the association includes one entity from each
participating entity type.

e Relationship types are represented on the ER diagram by a series of lines.

e As always, there are many notations in use today...

¢ In the original Chen notation, the relationship is placed inside a diamond, e.g. managers
manage employees:

Manager Employee

Figure : Chens notation for relationships

¢ For this module, we will use an alternative notation, where the relationship is a label on the
line. The meaning is identical

] manages [
Manager Employee

Figure : Relationships used in this document

Degree of a Relationship

¢ The number of participating entities in a relationship is known as the degree of the
relationship.
o If there are two entity types involved it is a binary relationship type

manages
Manager Employee

Figure : Binary Relationships

o If there are three entity types involved it is a ternary relationship type

31/08/2005

Database System Notes V3.2 Page 20 of 181

Sales sells
Assistant Product
| Customer

Figure : Ternary relationship

e It is possible to have a n-ary relationship (e.g. quaternary or unary).
e Unary relationships are also known as a recursive relationship.

manages

)

Employee J

Figure : Recursive relationship

e It is a relationship where the same entity participates more than once in different roles.

¢ In the example above we are saying that employees are managed by employees.

¢ If we wanted more information about who manages whom, we could introduce a second entity
type called manager.

Degree of a Relationship

¢ It is also possible to have entities associated through two or more distinct relationships.

. manages
[Department Employee
. employs

Figure : Multiple relationships

¢ In the representation we use it is not possible to have attributes as part of a relationship. To
support this other entity types need to be developed.

Replacing ternary relationships

When ternary relationships occurs in an ER model they should always be removed before finishing
the model. Sometimes the relationships can be replaced by a series of binary relationships that link
pairs of the original ternary relationship.

31/08/2005

Database System Notes V3.2 Page 21 of 181

Product

Figure : A ternary relationship example
e This can result in the loss of some information - It is no longer clear which sales assistant sold
a customer a particular product.
¢ Try replacing the ternary relationship with an entity type and a set of binary relationships.

Relationships are usually verbs, so name the new entity type by the relationship verb rewritten as a
noun.

e The relationship sells can become the entity type sale.

Figure : Replacing a ternary relationship

e So a sales assistant can be linked to a specific customer and both of them to the sale of a
particular product.
o This process also works for higher order relationships.

Cardinality

e Relationships are rarely one-to-one

e For example, a manager usually manages more than one employee

This is described by the cardinality of the relationship, for which there are four possible

categories.

One to one (1:1) relationship

One to many (1:m) relationship

Many to one (m:1) relationship

Many to many (m:n) relationship

On an ER diagram, if the end of a relationship is straight, it represents 1, while a "crow's foot"

end represents many.

e A one to one relationship - a man can only marry one woman, and a woman can only marry
one man, so it is a one to one (1:1) relationship

1 is married to 1
Man Woman

Figure : One to One relationship example

31/08/2005

Database System Notes V3.2 Page 22 of 181

e A one to may relationship - one manager manages many employees, but each employee only
has one manager, so it is a one to many (1:n) relationship

1 manages m
Manager Employee

Figure : One to Many relationship example

¢ A many to one relationship - many students study one course. They do not study more than
one course, so it is a many to one (m:1) relationship

studies 1
Student

Course

!
!

Figure : Many to One relationship example

¢ A many to many relationship - One lecturer teaches many students and a student is taught by
many lecturers, so it is a many to many (m:n) relationship

m teaches n
Lecturer Student

Figure : Many to Many relationship example

Optionality
A relationship can be optional or mandatory.

If the relationship is mandatory

an entity at one end of the relationship must be related to an entity at the other end.

The optionality can be different at each end of the relationship

For example, a student must be on a course. This is mandatory. To the relationship “student

studies course' is mandatory.

e But a course can exist before any students have enrolled. Thus the relationship “course
is_studied by student' is optional.

e To show optionality, put a circle or "0' at the “optional end' of the relationship.

e As the optional relationship is "course is_studied by student', and the optional part of this is

the student, then the *O' goes at the student end of the relationship connection.

is studied by
Course Student
0

Figure : Optionality example

o It is important to know the optionality because you must ensure that whenever you create a
new entity it has the required mandatory links.

31/08/2005

Database System Notes V3.2 Page 23 of 181

Entity Sets

Sometimes it is useful to try out various examples of entities from an ER model. One reason for this
is to confirm the correct cardinality and optionality of a relationship. We use an “entity set diagram'
to show entity examples graphically. Consider the example of ‘course is_studied by student'.

B5c Comp

MS5e Biology

Examples of the the "is_studied by" Examples of the
"Course" entities relationship "Student” entities

Figure : Entity set example

Confirming Correctness

BSc Conp
MSc Biology

Examples of the the "is_studied by Examples of the
"Course" entities relationship "Student" entities

Figure : Entity set confirming errors

Use the diagram to show all possible relationship scenarios.

Go back to the requirements specification and check to see if they are allowed.
If not, then put a cross through the forbidden relationships

This allows you to show the cardinality and optionality of the relationship

Deriving the relationship parameters

To check we have the correct parameters (sometimes also known as the degree) of a relationship, ask
two questions:

1. One course is studied by how many students? Answer = "zero or more'.

o This gives us the degree at the “student' end.

o The answer "zero or more' needs to be split into two parts.

o The "more' part means that the cardinality is ‘many’.

o The "zero' part means that the relationship is “optional'.

o Ifthe answer was “one or more', then the relationship would be "'mandatory’.
2. One student studies how many courses? Answer = "One’'

o This gives us the degree at the "course' end of the relationship.

31/08/2005

Database System Notes V3.2 Page 24 of 181

o The answer "one' means that the cardinality of this relationship is 1, and is “'mandatory’
o If the answer had been "zero or one', then the cardinality of the relationship would have
been 1, and be “optional'.

Redundant relationships

Some ER diagrams end up with a relationship loop.

e check to see if it is possible to break the loop without losing info

o Given three entities A, B, C, where there are relations A-B, B-C, and C-A, check if it is
possible to navigate between A and C via B. If it is possible, then A-C was a redundant
relationship.

e Always check carefully for ways to simplify your ER diagram. It makes it easier to read the
remaining information.

Redundant relationships example

o Consider entities "customer' (customer details), “address' (the address of a customer) and
“distance' (distance from the company to the customer address).

Address

far from work

far from work

Figure : Redundant relationship
Splitting n:m Relationships

A many to many relationship in an ER model is not necessarily incorrect. They can be replaced using
an intermediate entity. This should only be done where:

¢ the m:n relationship hides an entity
o the resulting ER diagram is easier to understand.

Splitting n:m Relationships - Example

Consider the case of a car hire company. Customers hire cars, one customer hires many card and a
car is hired by many customers.

m hire n
Customer Car

Figure : Many to Many example

The many to many relationship can be broken down to reveal a “hire' entity, which contains an
attribute “date of hire'.

31/08/2005

Database System Notes V3.2 Page 25 of 181

m n
Customer = Car

Figure : Splitting the Many to Many example

Constructing an ER model

Before beginning to draw the ER model, read the requirements specification carefully. Document
any assumptions you need to make.

1. Identify entities - list all potential entity types. These are the object of interest in the system. It
is better to put too many entities in at this stage and them discard them later if necessary.
2. Remove duplicate entities - Ensure that they really separate entity types or just two names for
the same thing.
o Also do not include the system as an entity type
o e.g. if modelling a library, the entity types might be books, borrowers, etc.
o The library is the system, thus should not be an entity type.
3. List the attributes of each entity (all properties to describe the entity which are relevant to the
application).
o Ensure that the entity types are really needed.
o are any of them just attributes of another entity type?
o if so keep them as attributes and cross them off the entity list.
o Do not have attributes of one entity as attributes of another entity!
4. Mark the primary keys.
o Which attributes uniquely identify instances of that entity type?
o This may not be possible for some weak entities.
5. Define the relationships
o Examine each entity type to see its relationship to the others.
6. Describe the cardinality and optionality of the relationships
o Examine the constraints between participating entities.
7. Remove redundant relationships
o Examine the ER model for redundant relationships.

ER modelling is an iterative process, so draw several versions, refining each one until you are happy
with it. Note that there is no one right answer to the problem, but some solutions are better than
others!

31/08/2005

Database System Notes V3.2 Page 26 of 181

Entity Relationship Modelling - 2

Contents

Country Bus Company
Entities

Relationships

Draw E-R Diagram
Attributes

Problems with ER Models

Fan traps
Chasm traps
Enhanced ER Models (EER)

Specialisation
Generalisation
Categorisation
Aggregation

Overview

e construct an ER model
e understand the problems associated with ER models
¢ understand the modelling concepts of Enhanced ER modelling

Country Bus Company

A Country Bus Company owns a number of busses. Each bus is allocated to a particular route,
although some routes may have several busses. Each route passes through a number of towns. One or
more drivers are allocated to each stage of a route, which corresponds to a journey through some or
all of the towns on a route. Some of the towns have a garage where busses are kept and each of the
busses are identified by the registration number and can carry different numbers of passengers, since
the vehicles vary in size and can be single or double-decked. Each route is identified by a route
number and information is available on the average number of passengers carried per day for each
route. Drivers have an employee number, name, address, and sometimes a telephone number.

Entities

Bus - Company owns busses and will hold information about them.
Route - Buses travel on routes and will need described.

Town - Buses pass through towns and need to know about them
Driver - Company employs drivers, personnel will hold their data.
Stage - Routes are made up of stages

Garage - Garage houses buses, and need to know where they are.

Relationships

e A bus is allocated to a route and a route may have several buses.
e Bus-route (m:1) is serviced by
e A route comprises of one or more stages.

31/08/2005

Database System Notes V3.2 Page 27 of 181

route-stage (1:m) comprises

One or more drivers are allocated to each stage.
driver-stage (m:1) is allocated

A stage passes through some or all of the towns on a route.
stage-town (m:n) passes-through

A route passes through some or all of the towns
route-town (m:n) passes-through

Some of the towns have a garage

garage-town (1:1) is situated

A garage keeps buses and each bus has one "home' garage
garage-bus (m:1) is garaged

Draw E-R Diagram
: m is serviced b
15 gar%/_{[Bus } - 7 { Route }
has
m
[Garage J
[Stage n

Driver }

Jm n 1% allocated
is situated in Town J passed through

Figure : Bus Company

Attributes

Bus (reg-no,make,size,deck,no-pass)
Route (route-no,avg-pass)

Driver (emp-no,name,address,tel-no)
Town (name)

Stage (stage-no)
Garage (name,address)

Problems with ER Models

There are several problems that may arise when designing a conceptual data model. These are known
as connection traps.

There are two main types of connection traps:

1. fan traps
2. chasm traps

Fan traps

A fan trap occurs when a model represents a relationship between entity types, but the pathway

31/08/2005

Database System Notes V3.2 Page 28 of 181

between certain entity occurrences is ambiguous. It occurs when 1:m relationships fan out from a
single entity.

Figure : Fan Trap

A single site contains many departments and employs many staff. However, which staff work in a
particular department?

The fan trap is resolved by restructuring the original ER model to represent the correct association.

i m

Figure : Resolved Fan Trap

Chasm traps

A chasm trap occurs when a model suggests the existence of a relationship between entity types, but
the pathway does not exist between certain entity occurrences.

It occurs where there is a relationship with partial participation, which forms part of the pathway
between entities that are related.

iz allocated
- B e Gl
n]]

Figure : Chasm Trap

A single branch is allocated many staff who oversee the management of properties for rent.

Not all staff oversee property and not all property is managed by a member of staff.

e What properties are available at a branch?

o The partial participation of Staff and Property in the oversees relation means that some
properties cannot be associated with a branch office through a member of staff.

e We need to add the missing relationship which is called “has' between the Branch and the
Property entities.

¢ You need to therefore be careful when you remove relationships which you consider to be

redundant.
: 0 OVErSEES
1z_allocated h i Staff
0

Eranch | F

rOpE
has perty

Figure : Resolved Chasm Trap

31/08/2005

Database System Notes V3.2 Page 29 of 181

Enhanced ER Models (EER)

The basic concepts of ER modelling is not powerful enough for some complex applications... We
require some additional semantic modelling concepts:

Specialisation
Generalisation
Categorisation
Aggregation

First we need some new entity constructs.

e Superclass - an entity type that includes distinct subclasses that require to be represented in a
data model.
e Subclass - an entity type that has a distinct role and is also a member of a superclass.

F ™

(vier sy

Sales
Personnel

Figure : Superclass and subclasses

| Staff

Subclasses need not be mutually exclusive; a member of staff may be a manager and a sales person.

The purpose of introducing superclasses and subclasses is to avoid describing types of staff with
possibly different attributes within a single entity. This could waste space and you might want to
make some attributes mandatory for some types of staff but other staff would not need these
attributes at all.

Specialisation

This is the process of maximising the differences between members of an entity by identifying their
distinguishing characteristics.

Staff(staff no,name,address,dob)
Manager(bonus)

Secretary(wp_skills)

Sales personnel(sales area, car allowance)

31/08/2005

Database System Notes V3.2 Page 30 of 181

s Ty

manages
males
Perzonnel

wotls for Staff
hy
Figure : Specialisation in action

¢ Here we have shown that the manages relationship is only applicable to the Manager subclass,
whereas the works_for relationship is applicable to all staff.
e [t is possible to have subclasses of subclasses.

Generalisation

Generalisation is the process of minimising the differences between entities by identifying common
features.

This is the identification of a generalised superclass from the original subclasses. This is the process
of identifying the common attributes and relationships.

For instance, taking:

car (regno, colour,make,model, numSeats)
motorbike (regno, colour,make, model, hasWindshield)

And forming:

vehicle (regno, colour,make, model, numSeats, hasWindshielf)

In this case vehicle has numSeats which would be NULL if the vehicle was a motorbike, and has
hasWindshield which would be NULL if it was a car.

Categorisation

Left as an exercise to research.
Aggregation

Left as an exercise to research.

31/08/2005

Database System Notes V3.2 Page 31 of 181

Mapping ER Models into Relations

Contents

What is a relation?

Foreign keys

Preparing to map the ER model
Mapping 1:1 relationships
Mandatory at both ends

When not to combine

If not combined...

Example

Mandatory <->Optional
Mandatory <->Optional - Subsume?
Summary...

Optional at both ends...
Mapping 1:m relationships
Mapping n:m relationships

Summary

Overview
e map 1:1 relationships into relations
e map l:m relationships into relations

e map m:n relationships into relations
o differences between mapping optional and mandatory relationships.

What is a relation?

A relation is a table that holds the data we are interested in. It is two-dimensional and has rows and
columns.

Each entity type in the ER model is mapped into a relation.

o The attributes become the columns.
e The individual entities become the rows.

- Student 7

! I

/ _hh”‘x s DoB -

! \ ; \

I ™ d 1

] ; |

] i

n, ! /! .”a
- fatne address | matric_no DoB -~
Jolm Sruth Seotland Lo iphen
Panl Tammes Japan 1254557 i3

Figure : a relation

31/08/2005

Database System Notes V3.2 Page 32 of 181

Relations can be represented textually as:

tablename (primary key, attribute 1, attribute 2, ... , foreign key)

If matric_no was the primary key, and there were no foreign keys, then the table above could be
represented as:

student (matric no, name, address, date of birth)

When referring to relations or tables, cardinality is considered to the the number of rows in the
relation or table, and arity is the number of columns in a table or attributes in a relation.

Foreign keys
A foreign key is an attribute (or group of attributes) that is the primary key to another relation.

e Roughly, each foreign key represents a relationship between two entity types.
They are added to relations as we go through the mapping process.

They allow the relations to be linked together.

A relation can have several foreign keys.

It will generally have a foreign key from each table that it is related to.
Foreign keys are usually shown in italics or with a wiggly underline.

Preparing to map the ER model

Before we start the actual mapping process we need to be certain that we have simplified the ER
model as much as possible.

This is the ideal time to check the model, as it is really the last chance to make changes to the ER
model without causing major complications.

Mapping 1:1 relationships
Before tackling a 1:1 relationship, we need to know its optionality.
There are three possibilities the relationship can be:

1. mandatory at both ends
2. mandatory at one end and optional at the other
3. optional at both ends

Mandatory at both ends

If the relationship is mandatory at both ends it is often possible to subsume one entity type into the
other.

e The choice of which entity type subsumes the other depends on which is the most important
entity type (more attributes, better key, semantic nature of them).

e The result of this amalgamation is that all the attributes of the “swallowed up' entity become
attributes of the more important entity.

e The key of the subsumed entity type becomes a normal attribute.

o If'there are any attributes in common, the duplicates are removed.

31/08/2005

Database System Notes V3.2 Page 33 of 181

e The primary key of the new combined entity is usually the same as that of the original more
important entity type.

When not to combine

There are a few reason why you might not combine a 1:1 mandatory relationship.

o the two entity types represent different entities in the ‘real world'.

¢ the entities participate in very different relationships with other entities.

e cfficiency considerations when fast responses are required or different patterns of updating
occur to the two different entity types.

If not combined...

If the two entity types are kept separate then the association between them must be represented by a
foreign key.

e The primary key of one entity type comes the foreign key in the other.
e [t does not matter which way around it is done but you should not have a foreign key in each
entity.

Example

e Two entity types; staff and contract.

o Each member of staff must have one contract and each contract must have one member of staff
associated with it.

e It is therefore a mandatory relations at both ends.

Staff b Contract ’/@
D

Figure : 1.1 mandatory relationship
¢ These to entity types could be amalgamated into one.

Staff (emp_no, name, cont no, start, end, position, salary)

e or kept apart and a foreign key used

Staff (emp_no, name, contract no)
Contract (cont no, start, end, position, salary)

e Or

Staff (emp_no, name)
Contract (cont no, start, end, position, salary, emp no)

Mandatory <->QOptional

31/08/2005

Database System Notes V3.2 Page 34 of 181

The entity type of the optional end may be subsumed into the mandatory end as in the previous
example.

It is better NOT to subsume the mandatory end into the optional end as this will create null entries.

EET =D

posthon
Staff hes | Contract ’.

Figure : 1:1 with I optional end

If we add to the specification that each staff member may have at most one contract (thus making the
relation optional at one end).

e Map the foreign key into Staff - the key is null for staff without a contract.

Staff (emp_no, name, contract no)
Contract (cont _no, start, end, position, salary)

e Map the foreign key into Contract - emp no is mandatory thus never null.

Staff (emp_no, name)
Contract (cont_no, start, end, position, salary, emp no)

Example
Consider this example:
e Staff “Gordon”, empno 10, contract no 11.

e Staff “Andrew”, empno 11, no contract.
e Contract 11, from Ist Jan 2001 to 10th Jan 2001, lecturer, on £2.00 a year.

Foreign key in Staff:

Contract Table:

|cont_nol|[start ||End |Position|[salary]|
[11 |15t Jan 2001|[10t" Jan 2001|[Lecturer|£2.00 |
Staff Table:

|Empno”Name ”Contract No|
[10 |[Gordon|[11 |
[11 |[rndrew|NuLL |

However, Foreign key in Contract:

31/08/2005

Database System Notes V3.2 Page 35 of 181

Contract Table:

|Cont_po”Start ”End ”Position”Salary”Empno
[11 |15t gan 2001|[10th Jan 2001][Lecturer|[g2.00 |10]
Staff Table:

|Empno”Name |
|lO ”Gordon
|ll ”Andrew

As you can see, both ways store the same information, but the second way has no NULLs.

Mandatory <->QOptional - Subsume?
The reasons for not subsuming are the same as before with the following additional reason.

o very few of the entities from the mandatory end are involved in the relationship. This could
cause a lot of wasted space with many blank or null entries.

e

yrvmmd
Lectarer fnamages

i Conrse
enferral
B CEED

Figure : I optional end

e Ifonly a few lecturers manage courses and Course is subsumed into Lecturer then there would
be many null entries in the table.

Lecturer (lect _no, 1 name, cno, c name, type, yr vetted, external)

¢ It would be better to keep them separate.

Lecturer (lect no, 1 name)
Course (cno, c¢ name, type, yr vetted, external, Iect no)

Summary...

So for 1:1 optional relationships, take the primary key from the "mandatory end' and add it to the
‘optional end' as a foreign key.

So, given entity types A and B, where A <->B is a relationship where the A end it optional, the result
would be:

A (primary key,attribute, ..., foreign key to B)
B (primary key,attribute,...)

Optional at both ends...

31/08/2005

Database System Notes V3.2 Page 36 of 181

Such examples cannot be amalgamated as you could not select a primary key. Instead, one foreign
key is used as before.

Staff

colour

ot

Figure : 2 optional end
¢ Each staff member may lease up to one car

e Each car may be leased by at most one member of staff
e If these were combined together...

Staff car(emp no, name, reg no, year, make, type, colour)
what would be the primary key?

e If emp no is used then all the cars which are not being leased will not have a key.
e Similarly, if the reg_no is used, all the staff not leasing a car will not have a key.
e A compound key will not work either.

Mapping 1:m relationships

To map 1:m relationships, the primary key on the “one side' of the relationship is added to the “'many
side' as a foreign key.

For example, the 1:m relationship "course-student':

matriculate
Course Student

Figure : Mapping 1:m relationships

¢ Assuming that the entity types have the following attributes:

Course (course no, C_name)
Student (matric_no, st name, dob)

e Then after mapping, the following relations are produced:

Course (course no, C_name)
Student (matric no, st name, dob, course no)

e [fan entity type participates in several 1:m relationships, then you apply the rule to each
relationship, and add foreign keys as appropriate.

Mapping n:m relationships

If you have some m:n relationships in your ER model then these are mapped in the following

31/08/2005

Database System Notes V3.2 Page 37 of 181

mannecr.

¢ A new relation is produced which contains the primary keys from both sides of the

relationship
e These primary keys form a composite primary key.

studies on
Student Module

Figure : Mapping n:m relationships

e Thus

Student (matric_no, st name, dob)
Module (module no, m name, level, credits)

e becomes

Student (matric_no, st name, dob)
Module (module no, m name, level, credits)
Studies (matric no,module no)

This is equivalent to:

Figure : After Mapping a n:m relationship

Student (matric_no, st name, dob)
Module (module no,m name, level,credits)
Study ()

Summary

e 1-1 relationships
Depending on the optionality of the relationship, the entities are either combined or the

primary key of one entity type is placed as a foreign key in the other relation.

e 1-m relationships
The primary key from the "one side' is placed as a foreign key in the "many side'.

e m-n relationships
A new relation is created with the primary keys from each entity forming a composite key.

31/08/2005

Database System Notes V3.2

Advanced ER Mapping

Contents

e Mapping parallel relationships
e Mapping 1:m in unary relationships
e Mapping superclasses and subclasses

e Example

Overview
e map parallel relationships into relations

e map unary relationships into relations
e map superclasses and subclasses into relations

Mapping parallel relationships

Page 38 of 181

Parallel relationships occur when there are two or more relationships between two entity types (e.g.

employees own and service cars).

WL S

Empl@}ree SEryires

Figure : Parallel Relationships

¢ In order to distinguish between the two roles we can give the foreign keys different names.
e Each relationship is mapped according to the rules, and we end up with two foreign keys

added to the Vehicle table.

¢ So we add the employee_no as the owner_no in order to represent the “owns' relationship.
e We then add the employee no as the serviced by attribute in order to represent the “services'

relationship.
e Before mapping

Employee (employee no, ...)
Vehicle (registration no,...)

e After mapping

Employee (employee no, ...)

Vehicle (registration no, owner no, serviced by, ...

Mapping 1:m in unary relationships

31/08/2005

Database System Notes V3.2 Page 39 of 181

0 manages
I

Employee

Figure : Mapping recursive relationships

Employees manage employees

Each employee has an employee no with is the primary key

We represent the manages relationship by adding a manager no as a foreign key.

This is in fact the employee no of the manager.

It is given a different name to clearly convey what it represents, and to ensure that all the
entity type's attributes have unique names, as to do otherwise would be invalid.

After mapping

Employee (employee no,manager no, name, ...)

So in general, for unary 1:n relationships, the foreign key is the primary key of the same table,
but is given a different name.

Note that the relationship is optional in both directions because not all staff can be managers,
and the top manager is not managed by anybody else.

Mapping superclasses and subclasses

There are three ways of implementing superclasses and subclasses and it depends on the application
which will be the most suitable.

Only the first method is a true reflection of the superclasses and subclasses and if either of the other
methods is preferential then the model should not have subclasses.

1. One relation for the superclass and one relation for each subclass.
2. One relation for each subclass.
3. One relation for the superclass.

Example

31/08/2005

Database System Notes V3.2 Page 40 of 181

Manager Secretary

Sales
Personnel

\ Staff

Figure : Superclass/Subclass mapping example

Staff (staff no,name,address, dob)

Manager (bonus)

Secretary (wp_skills)

Sales personnel (sales _area, car_allowance)

One relation for the superclass and one relation for each subclass:

Staff (staff no,name,address, dob)
Manager (staff no,bonus)

Secretary(staff no,wp_skills)

Sales personnel (staff no,sales area, car_allowance)

The primary key of the superclass is mapped into each subclass and becomes the subclasses primary
key. This represents most closely the EER model. However it can cause efficiency problems as there
needs to be a lot of joins if the additional information is often needed for all staff.

One relation for each subclass:

Manager (staff no,name, address, dob,bonus)
Secretary(staff no,name,address,dob,wp skills)
Sales personnel (staff no,name,address,dob,sales area, car allowance)

All attributes are mapped into each subclass. It is equivalent to having three separate entity types and
no superclass.

It is useful if there are no overlapping entities and there are no relationships between the superclass
and other entity types. It is poor if the subclasses are not disjoint as there is data duplication in each

relation which can cause problems with consistency.

One relation for the superclass:

Staff (staff no,name,address,dob, bonus, wp skills, sales area, car_allowance)
This represents a single entity type with no subclasses.

This is no good if the subclasses are not disjoint or if there are relationships between the subclasses
and the other entities.

31/08/2005

Database System Notes V3.2 Page 41 of 181

In addition, there will be many null fields if the subclasses do not overlap a lot. However, it avoids
any joins to get additional information about each member of staff.

31/08/2005

Database System Notes V3.2 Page 42 of 181

Chapter 3 - SQL

Sections covering basic SQL usage.

e Simple SELECT statements

e Logical Operators and Aggregation
e JOINs and VIEWs

e Subqueries and Schema

31/08/2005

Database System Notes V3.2 Page 43 of 181

Structured Query Language

Contents

Database Models
Relational Databases
Relational Data Structure
Domain and Integrity Constraints
Structure of a Table
o CAR
o DRIVER
o Relationship between CAR and DRIVER
o Example Data
o Columns or Attributes
Primary Keys

SQL Basics
Simple SELECT

Comments
SELECT filters
Comparisons
Dates

o BETWEEN
NULL
o LIKE

In the other chapters of this course consideration is given to producing a good design for a database
structure or schema. In this chapter the focus is on applying this schema to a database management
system, and then using that DBMS to allow storage and retrieval of data.

To communicate with the database system itself we need a language. SQL is an international
standard language for manipulating relational databases. It is based on an IBM product. SQL is short

for Structured Query Language.

SQL can create schemas, delete them, and change them. It can also put data into schemas and
remove data. It is a data handling language, but it is not a programming language.

SQL is a DSL (Data Sub Language), which is really a combination of two languages. These are the
Data Definition Language (DDL) and the Data Manipulation Language (DML). Schema changes are

part of the DDL, while data changes are part of the DML. We will consider both parts of the DSL in
this discussion of SQL.

Database Models

A data model comprises
e a data structure
¢ a set of integrity constraints

e operations associated with the data structure

Examples of data models include:

31/08/2005

Database System Notes V3.2 Page 44 of 181

e hierarchic
o network
e relational

Models other than the relational database module used to be quite popular. Each model type is

appropriate to particular types of problem. The Relational model type is the most popular in use
today, and the other types are not discussed further.

Relational Databases

The relational data model comprises:

¢ relational data structure
e relational integrity constraints
¢ relational algebra or equivalent (SQL)

e SQL is an ISO language based on relational algebra
¢ relational algebra is a mathematical formulation

Relational Data Structure

A relational data structure is a collection of tables or relations.

¢ A relation is a collection of rows or tuples
e A tuple is a collection of columns or attributes
e A domain is a pool of values from which the actual attribute values are taken.

Description Price

Figure : Tuples and Domains

Domain and Integrity Constraints

¢ Domain Constraints
o limit the range of domain values of an attribute
o specify uniqueness and ‘nullness' of an attribute
o specify a default value for an attribute when no value is provided.

31/08/2005

Database System Notes V3.2 Page 45 of 181

e Entity Integrity
o every tuple is uniquely identified by a unique non-null attribute, the primary key.
¢ Referential Integrity
o rows in different tables are correctly related by valid key values (" foreign' keys refer to
primary keys).

Structure of a Table

In the design process tables are defined, and the relationships between tables identified. Remember a
relationship is just a link between two concepts. Consider a table holding "drivers" and a table
holding "car" information... Each car is owned by a driver, and therefore there is a link between "car"
and "driver" to indicate which driver owns which car.

In the subsequent pages we will refer back to this driver and car arrangement. To make the examples
easier, lets create some example data.

CAR
The CAR table has the following structure:

REGNO : The registration number of the car

MAKE : The manufacturer of the car

COLOUR: The colour of the car

PRICE : The price of the car when it was bought new

DRIVER
The DRIVER table has the following structure:

e NAME : The full name of the driver
o DOB : The data of birth of the driver

Relationship between CAR and DRIVER

The DRIVER and the CAR has a relationship between them of N:1. This indicates that a CAR can
have only 1 DRIVER, but that a DRIVER can own more than 1 CAR simultaneously.

DRIVER CAR

Figure : ER Diagram of DRIVER and CAR
In the design section we can see that this requires a FOREIGN KEY in the CAR end of the

relationship. This foreign key allows us to implement the relationship in the database. We will call
this field OWNER.

31/08/2005

Database System Notes V3.2 Page 46 of 181

Example Data

DRIVER

| NAME | DOB |
lim Smith |[11 Jan 1980 |
[Bob Smith|[23 Mar 1981|
|Bob Jones ||3 Dec 1986 |

CAR

| REGNO | MAKE ||[COLOUR|PRICE| OWNER |
IF611 AAA|[FORD IRED 12000 |{Jim Smith |
D111 BBB [SKODA |IBLUE [[11000 [Jim Smith |
|A155 BDE|[MERCEDES|IBLUE (22000 [Bob Smith|
[K555 GHT]|[FIAT IGREEN [6000 |[Bob Jones |
[SC04 BFE [SMART |BLUE |[13000 |

Columns or Attributes
Each column is given a name which is unique within a table

Each column holds data of one specified type. E.g.

integer decimal
character text data
-- the range of values can be further constrained

If a column of a row contains no data, we say it is NULL. For example, a car just off the production
line might not have an owner in the database until someone buys the car. A NULL value may also
indicate that the value is unavailable or inappropriate . This might be the case for a car which is
being destroyed or a car where two people are arguing in court that they are both the owner.

Some important rules:

All rows of a table must be different in some way from all other rows.
Sometimes a row is referred to as a Tuple.

Cardinality is the number of ROWS in a table.

Arity is the number of COLUMNS in a table.

Primary Keys
A table requires a key which uniquely identifies each row in the table. This is entity integrity.

The key could have one column, or it could use all the columns. It should not use more columns than
necessary. A key with more than one column is called a composite key.

A table may have several possible keys, the candidate keys, from which one is chosen as the primary
key.

31/08/2005

Database System Notes V3.2 Page 47 of 181

No part of a primary key may be NULL.
If the rows of the data are not unique, it is necessary to generate an artificial primary key.

In our example, DRIVER has a primary key of NAME, and CAR has a primary key of REGNO.
This database will break if there are two drivers with the same name, but it gives you an idea what
the primary key means...

Note that if for some reason JIM SMITH decided to change his name to "BRIAN SMITH", then not
only would this have to be changed in DRIVER, but it would also have to be changed in CAR. If you
changed it only in DRIVER, there would be some foreign keys pointing to DRIVER looking for a
driver who does not exist. This would be an error called a REFERENTIAL INTEGRITY error, and
the DBMS stops you making changes to the database which would result in such an error.

SQL Basics

Basic SQL Statements include:

CREATE - a data structure

SELECT - read one or more rows from a table
INSERT - one or more rows into a table
DELETE - one or more rows from a table
UPDATE - change the column values in a row
DROP - a data structure

In the remainder of this section only simple SELECT statements are considered.

Simple SELECT

The syntax of a SELECT statement is :

SELECT column FROM tablename

This would produce all the rows from the specified table, but only for the particular column
mentioned. If you want more than one column shown, you can put in multiple columns separating
them with commas, like:

SELECT columnl,column2,column3 FROM tablename

If you want to see all the columns of a particular table, you can type:

SELECT * FROM tablename

Lets see it in action on CAR...

31/08/2005

Database System Notes V3.2 Page 48 of 181

SELECT * FROM car;

| REGNO || MAKE |COLOUR|PRICE| OWNER |
[F611 AAA|[FORD IRED 112000 |[Jim Smith |
111 BBB [|SKODA |[BLUE 11000 |{Jim Smith |
|A155 BDE|[MERCEDES|IBLUE [22000 [[Bob Smith|
IK555 GHT|[FIAT IGREEN |[6000 |[Bob Jones |
[SC04 BFE [SMART |[BLUE |[13000 |

SELECT colour,owner FROM car;

|COLOUR|| OWNER |

IRED |[Jim Smith |

IBLUE |Jim Smith |

IBLUE |[Bob Smith|

IGREEN |Bob Jones |
LUE

‘ii

In SQL, you can put extra space characters and return characters just about anywhere without
changing the meaning of the SQL. SQL is also case-insensitive (except for things in quotes). In
addition, SQL in theory should always end with a ';' character. You need to include the ';' if you have
two different SQL queries so that the system can tell when one SQL statement stops and another one
starts. If you forget the ';' the online interface will put one in for you. For these reasons all of the
following statements are identical and valid.

SELECT REGNO FROM CAR;
SELECT REGNO FROM CAR
Select REGNO from CAR

select regno FROM car

SELECT
regno
FROM car;

Comments

31/08/2005

Database System Notes V3.2 Page 49 of 181

Sometimes you might want to write a comment in somewhere as part of an SQL statement. A
comment in this case is a simple piece of text which is meaningful to yourself, but should be ignored
by the database. The characters '--', when they appear in a query, indicate the start of a comment.
Everything after that point is ignored until the end of that line. The following queries are all
equivalent.

SELECT regno
FROM car;

SELECT regno -- The registration number
FROM car -—- The car storage table

’

Warning: You cannot put a comment immediately after a ';'. Comments are only supported within
the text of an SQL statement. The following will cause SQL errors:

SELECT regno
FROM car; -- Error here as comment is after the query

-- Error here as comment is before the start of the query
SELECT regno
FROM car;

SELECT filters

Displaying all the rows of a table can be handy, but if we have tables with millions of rows then this
type of query could take hours. Instead, we can add "filters" onto a SELECT statement to only show
specific rows of a table. These filters are written into an optional part of the SELECT statement,
known as a WHERE clause.

SELECT columns
FROM table
WHERE rule

The "rule" section of the WHERE clause is checked for every row that a select statement would
normally show. If the whole rule is TRUE, then that row is shown, whereas if the rule is FALSE,
then that row is not shown.

The rule itself can be quite complex. The simplest rule is a single equality test, such as "COLOUR =
IREDHV.

Without the WHERE rule would show:

’

REGNO
611 AA
J111 BBB

K555 GHT
SC04 BFE

> = o
ot =
)] =
()] (@]
w [=|
) -
D
o > &
=]
(@]
H
=
(@]
3
(@]
b
)

From the database we know that only F611 AAA is RED, and the rest of the cars are either BLUE or

31/08/2005

Database System Notes V3.2 Page 50 of 181

GREEN. Thus a rule COLOUR = 'RED'is only true on the row with F611 AAA, and false
elsewhere. With everything in a query:

SELECT regno from CAR
WHERE colour = 'RED';

An important point to note is that queries are case sensitive between the quotes. Thus 'RED' will
work, but 'red' will produce nothing. The case used in the quotes must match perfectly the case
stored in the table. SQL is not forgiving and if you forget you can be scratching you head for hours
trying to fix it.

Note also that "colour" does not have to appear on the SELECT line as a column name. It can if you
want to see the colour, but there is no requirement for it to be there. Therefore this will work too:

SELECT regno,colour from CAR
WHERE colour = 'RED';

| REGNO ||[COLOUR|
[F611 AAA|[RED |

Comparisons

SQL supports a variety of comparison rules for use in a WHERE clause. These include =,!=,<>, <,
<=, >, and >=.

Examples of a single rule using these comparisons are:

|WHERE colour = 'RED' ||The colour attribute must be RED |
IWHERE colour !='RED' |[The colour must be a colour OTHER THAN RED |

|WHERE colour <> 'RED' ||The same as !=

IWHERE PRICE > 10000 |[The price of the car is MORE THAN 10000

I[WHERE PRICE >= 10000|[The price of the car is EQUAL TO OR MORE THAN 10000
IWHERE PRICE < 10000 |[The price of the car is LESS THAN 10000 |
I[WHERE PRICE <= 10000||The price of the car is EQUAL TO OR LESS THAN 10000 |

Note that when dealing with strings, like RED, you must say 'RED'. When dealing with numbers,
like 10000, you can say '10000' or 10000. The choice is yours.

Dates

Date rules are some of the hardest rules to get right in writing SQL, yet there is nothing particularly
complex about them. The hard part is working out what it means to be GREATER THAN a
particular date.

In date calculations, you can use all the normal comparators.

31/08/2005

Database System Notes V3.2 Page 51 of 181

SELECT name,dob from driver

| NAME | DOB |
lJim Smith |[11 Jan 1980 |
[Bob Smith|[23 Mar 1981|
|Bob Jones ||3 Dec 1986 |

SELECT name,dob from driver
WHERE DOB = '3 Dec 1986'

| NAME | DOB |
|Bob Jones||3 Dec 1986|

In other comparators, it is important to realise that a date gets bigger as you move into the future, and
smaller as you move into the past. Thus to say 'DATE1 < DATE2' you are stating that DATE1
occurs before DATE?2 on a calender. For example, to find all drivers who were born on or after the
Ist Jan 1981 you would do:

SELECT name,dob from driver
WHERE DOB >= 'l Jan 1981'

| NAME | DOB |
[Bob Smith|[23 Mar 1981|
|Bob Jones ||3 Dec 1986 |

The syntax for dates does change slightly on difference database systems, but the syntax 'l Jan 2000'
works in general on all systems. Oracle also allows dates like '1-Jan-2000' and '1-Jan-00'. If you
specify a year using only the last two digits, Oracle uses the current date to compute the missing
parts of the year, converting '00' to '2000'. Do not get confused by saying '87' for '1987' and ending
up with 2087'!

BETWEEN

Sometimes when you are dealing with dates you want to specify a range of dates to check. The best
way of doing this is using BETWEEN. For instance, to find all the drivers born between 1995 and
1999 you could use:

SELECT name,dob from driver
WHERE DOB between 'l Jan 1985' and '31 Dec 1999'

| NAME | DOB |
[Bob Jones|[3 Dec 1986

Note that the dates have day of the month and month in them, and not just the year. In SQL, all dates
must have a month and a year. If you try to use just a year the query will fail.

BETWEEN works for other things, not just dates. For instance, to find cars worth between 5000 and
10000, you could execute:

SELECT regno

31/08/2005

Database System Notes V3.2 Page 52 of 181

| REGNO |[PRICE]|
K555 GHT

NULL

The NULL value indicates that something has no real value. For this reason the normal value
comparisons will always fail if you are dealing with a NULL. If you are looking for NULL, for
instance looking for cars without owners using OWNER of CAR, all of the following are wrong!

SELECT regno from CAR WHERE OWNER
SELECT regno from CAR WHERE OWNER

NULL WRONG!!
'NULL' WRONG!!

Instead SQL has a special comparison operator called IS which allows us to find NULL values.
There is also an opposite to IS, called IS NOT, which finds all the values which are not NULL. So
finding all the regnos of cars with current owners would be (note that if they have an owner, then the
owner has a value and thus is NOT NULL):

And finding cars without owners would be:

SELECT REGNO from CAR
WHERE OWNER is NULL

REGNO
SC04 BFE

LIKE

When dealing with strings, sometimes you do not want to match on exact strings like ='RED’, but
instead on partial strings, substrings, or particular patterns. This could allow you, for instance, to find
all cars with a colour starting with 'B'. The LIKE operator provides this functionality.

The LIKE operator is used in place of an '=' sign. In its basic form it is identical to '=". For instance,
both of the following statements are identical:

SELECT regno FROM car WHERE colour = 'RED';
SELECT regno FROM car WHERE colour LIKE 'RED';

The power of LIKE is that it supports two special characters, '%' and '-'. These are equivalent to the

31/08/2005

Database System Notes V3.2 Page 53 of 181

"*!'and '?' wildcard characters of DOS. Whenever there is an '-' character in the string, any character
will match. Whenever there is an '%' character in the string, 0 or more characters will match.
Consider these rules:

|name LIKE 'Jim Smith' ||Matches 'Jim Smith' |
|name LIKE' im Smith'”Matches things like 'Jim Smith' or 'Tim Smith'|
|name LIKE' Smith'”Matches 'Jim Smith' and 'Bob Smith' |
|name LIKE '% Smith' ||Matches 'Jim Smith' and 'Bob Smith' |
|
|
|

|name LIKE "% S%' ||Matches 'Jim Smith' and 'Bob Smith'
Iname LIKE 'Bob %' |Matches 'Bob Jones' and 'Bob Smith’
Iname LIKE '%' |[Matches anything not null

Note however that LIKE is more powerful than a simple '=' operator, and thus takes longer to run. If
you are not using any wildcard characters in a LIKE operator then you should always replace LIKE
with '='.

31/08/2005

Database System Notes V3.2

Logical Operators and Aggregation

Contents

Logical Operators

o AND

o OR

o NOT

o Precedence

o Parenthesis
DISTINCT
ORDER BY
IN
Aggregate Functions
o AVERAGE
o SUM
o MAX
O
O

MIN
COUNT
o COUNT DISTINCT
GROUP BY aggregation
o HAVING

Logical Operators

Page 54 of 181

In the previous section we saw how a single rule could be added to a query using a WHERE clause.
While this is useful, usually more than a single rule is required to produce the correct result. To

support multiple rules we need to make use of NOT, AND, OR and parentheses.

AND

The basic way of supporting multiple rules in a single query is by making use of AND. AND
provides a way of connecting two rules together such that ALL the rules must be true before the row

is shown. Lets make use again of the CAR table:

| REGNO | MAKE |[COLOUR||PRICE||OWNER |
IF611 AAA|[FORD IRED 112000 |[Jim Smith |
D111 BBB [SKODA |IBLUE [11000 [Jim Smith |
|A155 BDE|MERCEDES|BLUE _ [22000 |[Bob Smith|
[K555 GHT|[FIAT IGREEN |[6000 |[Bob Jones |
[SC04 BFE [SMART |[BLUE 13000 |

Consider the case where a police eye witness spots a car driving away from a crime. The witness
reports that the car was BLUE and had the character 'S' somewhere in the REGNO field. Taking

these rules seperately...

SELECT regno from CAR
WHERE colour = 'BLUE';

31/08/2005

Database System Notes V3.2 Page 55 of 181

REGNO
J111 BBB
A155 BDE

C04 BFE

n
= 78]
=
=
(@]
=]
H
D
Q
o]
(@]
h
H
O
3
Q
T
s

WHERE regno LIKE '$5%'

K555 GH

>

hll| [}

Tz
=] (1=

We are looking for a REGNO in common to both these results, which means the car we are looking
for is 'A155 BDE'. Rather than doing this ourselves we want the computer to identify the right car in
a single query. The two rules in question are linked together with an AND.

SELECT regno from CAR
WHERE colour = 'BLUE' AND regno LIKE '%5%'

REGNO
A155 BDE

II |

Remember that the layout of the SQL is independent of spaces and newlines, so this query is
identical to:

SELECT regno

FROM CAR
WHERE colour = 'BLUE'

AND regno LIKE '%5%'

~

You can link as many rules together as you like. So for instance if the witness said that the car was
BLUE, had a 5 in the registration number, and that someone said the car was owned by Bob, we
could write a query:

SELECT regno

FROM CAR

WHERE colour = 'BLUE'
AND regno LIKE '%5%'
AND owner LIKE 'Bob %'

~.

OR

AND allows us to link rules together such that all rules must be true to see that row. Think of AND
as 'As well as'. Sometimes we want to say 'or that' or 'either' rather than 'As well as'. To do this we
use OR. For instance, lets say that the police witness said that the car colour was either RED or
BLUE, and they were not sure which. If you said:

WHERE colour = 'RED' AND colour = 'BLUE'

31/08/2005

Database System Notes V3.2 Page 56 of 181

then no rows would be produced, as you are saying you want rows where the colour is both RED and
BLUE at the same time (RED as well as BLUE). What we need is either RED OR BLUE.

SELECT REGNO, COLOUR from CAR
WHERE colour = 'RED'
OR colour 'BLUE';

| REGNO ||[COLOUR|
[F611 AAA|RED |
U111 BBB |[BLUE |
|A155 BDE|BLUE |
[SC04 BFE|BLUE |

NOT

The NOT operator does the opposite of whatever comparison is being done. NOT is not frequently
needed, as there is usually an opposite operator already. For instance, if you wanted the opposite of:

WHERE colour = 'RED'

You could say

WHERE colour != 'RED'

Using NOT you could also say

WHERE NOT colour = 'RED'

While not particularly useful in these simple examples, NOT comes into its own once you start to
use parentheses.

Precedence

AND, OR, and NOT become more complex to understand when you mix them together in a single
query. The problem is that the rules are combined together, not in the order you write them, but in
the order of their precedence. This states that NOT is done first, then AND, and finally OR. This can
make a BIG difference to your queries!

Consider the case of the police witness. Lets say that the car being looked for had a 5 in the
registration number, and was either RED or BLUE.

SELECT REGNO, COLOUR from CAR

WHERE colour = 'RED' -—-1
OR colour = 'BLUE' -—= 2

AND regno LIKE '$5%' -- 3

’

| REGNO [[COLOUR|
[F611 AAA|[RED |
|A155 BDE|BLUE |

In this query, rule 3 and rule 2 and ANDed together first, as they have a higher precedent. Only then

31/08/2005

Database System Notes V3.2 Page 57 of 181

is rule 1 ORed in. Thus this query says "The car is BLUE with a 5 in the regno" OR "the car is
RED". What was wanted was to have rules 1 and 2 done first, and then 3, so that the query says "The
car is either RED or BLUE" AND "the car had a 5 in the regno". To do this we need to use
parenthesis.

Parenthesis

Parenthesis, or brackets, are used to instruct the database which rules should be done first. The
database uses a simple ruleset to understand brackets. If you have any brackets, then the rule in the
brackets is done first. If you have brackets within brackets, then the inner brackets are done first. In
the example above, the right query can be generated as:

SELECT REGNO,COLOUR from CAR
WHERE (colour = 'RED'

OR colour = 'BLUE')

AND regno LIKE '%5%'

~.

| REGNO ||[COLOUR|
|A155 BDE|BLUE |

The following queries are all identical in function to the above query...

SELECT REGNO,COLOUR from CAR
WHERE (colour = 'RED' OR colour = 'BLUE')
AND regno LIKE '%5%';

SELECT REGNO, COLOUR from CAR

WHERE ((colour = 'RED' OR colour = 'BLUE')
AND regno LIKE '%5%"'");

Do not use brackets where they are not needed, as it makes the query harder for users to understand
whats going on.

DISTINCT

Lets say you want a list of all the colours of cars in the database. The COLOUR field of CAR gives
you this, and thus:

SELECT colour FROM car;

COLOUR

LUE
LUE

w%wwg
g5 w)
g3l
Z

LUE

This result was not the ideal one wanted. BLUE for some reason appears 3 times. It does this
because BLUE appears 3 times in the original data. Sometimes this duplication is what is wanted,
other times we want only to see the colours appearing once. To tell the database to show the rows
only once, you can use the keyword DISTINCT. This appears immediately after the word SELECT.

31/08/2005

Database System Notes V3.2 Page 58 of 181

DISTINCT effectively means that all rows which appear must be unique, and any duplicate rows
will be deleted.

SELECT DISTINCT colour FROM car;

LUE

iii
e
T
zl &
=

=

ED

ORDER BY

When a query is executed the results are displayed in an almost random order. The order is
dependent on how the database management system was written. This is fine usually, but sometimes
giving the data out in a particular order would make the data must more useful. There is a special
clause, ORDER BY, which can be added to the end of a query to give the data a particular order.

SELECT make FROM car;

MAKE

KODA
MERCEDE

IAT

MART

2] |Res! w2 ||
o
||||||||||||Ii||||
(%)

To order alphabetically (which in SQL is known as ascending or ASC) you can use ORDER BY or
ORDER BY ASC.

SELECT make FROM car
ORDER BY make;

MAKE
IAT

S
KODA
MART

v [= [
HE
A
@)
ey
)
eyl

This is identical to

SELECT make FROM car
ORDER BY make ASC;

To order things in the reverse ordering, you can use ORDER BY DESC.

SELECT make FROM car
ORDER BY make DESC;

31/08/2005

Database System Notes V3.2 Page 59 of 181

MAKE
MART
KODA

MERCEDES
ORD
IAT

For complex orderings involving more than one column, you can specify multiple columns in the
ORDER BY statement, simply by separating each column name with a comma. Thus a query to sort
cars by colour and then make would look like:

SELECT make,colour FROM car
ORDER BY colour,make;

MAKE |[COLOUR|
ISKODA |BLUE |
ISMART _ |BLUE |
IMERCEDES|BLUE |
|
|

IN

e IN (list of values) determines whether a specified value is in a set of one or more listed values.

List the registration numbers of cars which are either SKODA or SMART

SELECT regno,make
FROM car
WHERE make = 'SKODA' or make='SMART'

~

This can be rewritten using IN.

SELECT regno,make
FROM car
WHERE make IN ('SKODA', 'SMART')

A good way to think of IN is to consider it as "is one of the following".

Aggregate Functions

Operators exist in SQL to give results based on the statistics of a group of values stored in the

31/08/2005

Database System Notes V3.2 Page 60 of 181

database. Such operators include "what is the maximum number" and "what is the average". These
functions are called SET or AGGREGATE functions.

AVERAGE

To calculate the average of a column you use the AVG function.

SELECT price FROM car;

»—i»—aP-U
SN E
glg(a

=

N
\®)
)
]
()

D
S
]
(=)

p—
(8]
S
S
S

SELECT avg(price) FROM car;

avg(price)
12800

SUM
To calculate the SUM of all values in a column you use the SUM function.

SELECT sum(price) FROM car;

sum(price
4000

><il

MA

To calculate the maximum or biggest value present in a particular column you can use the MAX
function.

SELECT max (price) FROM car;

MIN

To calculate the minimum or smallest value present in a particular column you can use the MIN
function.

31/08/2005

Database System Notes V3.2 Page 61 of 181

SELECT min(price) FROM car;

000

i

COUNT

To work out how many rows are in a particular query result you can use the COUNT function.

Using "count(column)" counts how many rows exist in the answer where that column is NOT
NULL. Using "count(*)" counts how many rows exist independent of NULL values.

SELECT count (price) FROM car;

sum(price)

II

In this case, the following SQL produces the same answer.

SELECT count (*) FROM car;

COUNT DISTINCT

Sometimes you do not want to count how many rows are in a particular column, but how many
different values are stored in a column. There is a special variation of count which allows you to do
that, known as COUNT DISTINCT. Its syntax is a little unusual...

SELECT count (colour) from car;

sum(price)

II

SELECT count (DISTINCT colour) from car;

sum(price)

II

GROUP BY aggregation

The aggregate functions are excellent when all you want is a single number answer. Frequently what
is needed is statistical analysis in groups. For instance, what is the maximum cost of a car given its
colour. Here we are wanting two columns, one the car colour, and the second column the highest

cost. Intuitively one might think:

SELECT colour,max (price)
FROM car

~

If you were to run this query it would produce a "group by" error.

31/08/2005

Database System Notes V3.2 Page 62 of 181

Instead, what you have to do is consider all aggregate functions in your query, and over which
columns they are going to be grouped. In this case we are grouping on colour, and want the
maximum price within each "colour" group. To tell the computer this we use GROUP BY.

SELECT colour,price
FROM car

|COLOUR||PRICE]
IRED |[12000 |
IBLUE 11000 |
IBLUE 22000 |
IGREEN |6000 |
IBLUE [[13000 |

SELECT colour,max (price)
FROM car
GROUP BY colour

|COLOUR||max(PRICE)|

IRED {12000 |
BLUE {22000 |
IGREEN (6000 |

If you are ever confused by what to put in the GROUP BY, then here is a simple rule which is 99%
accurate... If you have a SELECT line with aggregate functions, then you need a GROUP BY listing
all the column names from the SELECT line which are not used by the functions. In this example
"price" and "colour" are columns from SELECT, but as "price" is used in MAX, only "colour" needs
to go into the GROUP BY statement.

HAVING

One annoying feature of SQL is that aggregate functions are executed at almost the last stage of the
query process. This makes writing queries like "Which owners own more than 1 car" quite complex.
Ideally we would like to write:

SELECT owner from car where count (owner) > 1;

The problem is that this does not work! Aggregate functions cannot appear in a WHERE clause, so
this query is illegal... To get around this you can have the HAVING clause. HAVING works in an
identical way to WHERE, except that it runs very late in the process and allows aggregate functions.
It is also VERY expensive for the database to use, so do not use it until it is absolutely essential.

Our query can now be rewritten thus:

SELECT owner, count (regno)
FROM car

GROUP BY owner

HAVING count (regno)>1;

31/08/2005

Database System Notes V3.2 Page 63 of 181

This query also shows how many cars the owner owns. You do not have to have the function in the
HAVING on the SELECT line. The following also works:

SELECT owner

FROM car

GROUP BY owner

HAVING count (regno)>1;

If you remember count(*) counts how many rows there are in the answer. With a GROUP BY, it
counts how many rows are in each group. The difference between a count with * or with a column
name is that using a column name makes the count ignore NULL entries in that column, whereas
with * NULL entries are counted too. In our example, REGNO is never NULL, so the query is also
identical to:

SELECT owner

FROM car

GROUP BY owner
HAVING count (*)>1;

31/08/2005

Database System Notes V3.2 Page 64 of 181

JOINs and VIEWSs

Contents

o Multiple source tables

o JOIN condition
Traditional JOIN
Modern JOIN
OUTER JOIN
FULL OUTER JOIN
Naming
Aliases
Self Joins
VIEWs

o DROP View

O O O O

Multiple source tables

Sometimes you will need to write a query which uses more than a single table. This is perfectly
acceptable in SQL, but needs a little care... It is very easy to produce multi-table queries which
produce mostly rubbush.

The basic concept for producing multi-table queries is that all the tables you need must be listed in
the FROM clause of the query. For example, lets try to write a query which lists the owner name,
date of birth, and the registration number, for each car in the database. REGNO is in CAR, but DOB
is in DRIVER. Therefore both tables are needed. The basic query looks like:

SELECT name, dob, regno
FROM car,driver

’

The order in which the tables appear in the FROM line are irrelevent. However, this query does not
produce the right answer. The reason for this is that the DBMS does not understand how to relate
one table to the other.

JOIN condition

In order to usefully join multiple tables together we need to explain to the database how they are
joined. The FROM clause takes all rows in all the tables listed, and forms a new table which contains
all combinations of the original rows. Most of the time this results in rubbish. Look at this example.

31/08/2005

Database System Notes V3.2 Page 65 of 181

SELECT *
FROM car

| REGNO | MAKE |[COLOUR||PRICE||OWNER |
IF611 AAA|[FORD IRED 12000 |[Jim Smith |
D111 BBB [SKODA |IBLUE [[11000 [Jim Smith |
|A155 BDE|MERCEDES|BLUE _ [22000 |[Bob Smith|
[K555 GHT]|[FIAT IGREEN _[6000 |[Bob Jones |
[SC04 BFE [SMART |BLUE |[13000 |

SELECT *
FROM driver

| NAME | DOB |
[Jim Smith ||11 Jan 1980 |
[Bob Smith|[23 Mar 1981]
|Bob Jones ||3 Dec 1986 |

SELECT *
FROM car,driver

| REGNO | MAKE [|[COLOUR|PRICE|OWNER| NAME | DOB |
[F611 AAA|[FORD IRED 12000 [[Jim Smith |[Jim Smith |[11 Jan 1980 |
D111 BBB |SKODA |BLUE [[11000 |[Jim Smith |[Jim Smith|[11 Jan 1980 |
|A155 BDE|[MERCEDES|[BLUE [22000 [Bob Smith||Jim Smith |[11 Jan 1980 |

IK555 GHT|[FIAT IGREEN [[6000 |[Bob Jones |[Jim Smith [[11 Jan 1980 |
[SC04 BFE [SMART |[BLUE |[13000 | lJim Smith |[11 Jan 1980 |
[F611 AAA|[FORD IRED 112000 |[Jim Smith |[Bob Smith|[23 Mar 1981

D111 BBB [SKODA |IBLUE [[11000 [Jim Smith ||Bob Smith|[23 Mar 1981]
|A155 BDE|MERCEDES|BLUE _ [22000 |[Bob Smith||Bob Smith|23 Mar 1981

[K555 GHT|[FIAT IGREEN |[6000 |[Bob Jones|[Bob Smith|[23 Mar 1981]|
[SC04 BFE [SMART |BLUE 13000 | IBob Smith|[23 Mar 1981
IF611 AAA|[FORD IRED 112000 |{Jim Smith |[Bob Jones |3 Dec 1986 |

D111 BBB [SKODA |IBLUE [[11000 [Jim Smith ||Bob Jones |[3 Dec 1986 |
|A155 BDE|[MERCEDES|[BLUE [22000 [[Bob Smith{|Bob Jones |[3 Dec 1986 |
|K555 GHT”FIAT ||GREEN ||6000 ||B0b Jones ||B0b Jones ||3 Dec 1986 |
[SC04 BFE [SMART |BLUE 13000 | IBob Jones |[3 Dec 1986 |

In our query, we are only interested in table combinations which obey the rules of the FOREIGN
KEY relationship which joins these two tables. If you remember, the PRIMARY KEY of DRIVER
(NAME) was copied into CAR as a FOREIGN KEY (named OWNER). Thus this FROM generated
table needs to be filtered so that only the rows where NAME = OWNER appear. Note that this
FROM generated table containing all the combinations of the listed tables is known as the cartesian

31/08/2005

Database System Notes V3.2 Page 66 of 181

cross product. We will return to the subject of the cross product in the relational algebra chapter.

Now, in order to get our query working properly, we put in the JOIN condition NAME = OWNER.
There are two basic ways to do this, which we will call traditional and modern. Both ways are
usually referred to as an INNER JOIN.

Traditional JOIN

To put the join condition NAME = OWNER into a query using the traditional approach is simply to
list it in the WHERE clause as a rule. So...

SELECT *
FROM car,driver

WHERE owner = name

| REGNO || MAKE |COLOUR|PRICE| OWNER| NAME | DOB |
[F611 AAA|[FORD IRED 12000 [[Jim Smith |[Jim Smith |[11 Jan 1980 |
111 BBB [|SKODA |BLUE [11000 [JJim Smith |[Jim Smith|[11 Jan 1980 |
|A155 BDE|[MERCEDES|BLUE [22000 [[Bob Smith||Bob Smith|[23 Mar 1981]
[K555 GHT|[FIAT IGREEN |[6000 |[Bob Jones |[Bob Jones|[3 Dec 1986 |

Modern JOIN

To put the join condition NAME = OWNER into a query using the modern approach, you rewrite the
FROM line to say:

FROM tablel JOIN table2 ON (rules)

So in our example:

SELECT *
FROM car JOIN driver ON (owner = name)

| REGNO || MAKE |COLOUR|PRICE| OWNER| NAME | DOB |
[F611 AAA|[FORD IRED 12000 |[Jim Smith |[Jim Smith [[11 Jan 1980 |
U111 BBB [|SKODA |BLUE [11000 [JJim Smith |[Jim Smith {11 Jan 1980 |
|A155 BDE|[MERCEDES|BLUE [22000 [Bob Smith{|Bob Smith|[23 Mar 1981]
|K555 GHT”FIAT ||GREEN ||6000 ||B0b Jones ||B0b Jones ||3 Dec 1986 |

OUTER JOIN

You might have noticed a result in the previous query (when there were no join conditions) where
there was a NULL in the OWNER field. This is for a car with no current owner. Once the join
condition was inserted into the query the rows with NULL owners were filtered out. This is usually
exactly what is desired, but sometimes we want the join condition to be obeyed if the fields are not
NULL, and the rules to be broken when there is a NULL. Such JOINs are called OUTER JOINS. In
the modern JOIN syntax you simply insert either the word LEFT or the word RIGHT in front of the
word JOIN.

31/08/2005

Database System Notes V3.2 Page 67 of 181

To decide if the right word is LEFT of RIGHT, you have to consider where the NULL values will

be. In our example query, the NULL value is in the OWNER field, which belongs to the CAR table.
The current JOIN is:

FROM car JOIN driver on (owner = name)

\ | - To the right of JOIN
\ tommm The JOIN statement
t-——m To the left of JOIN

As the CAR table has the NULL values, and CAR appears to the left of the word JOIN in the query,
the right keyword to use is LEFT JOIN. The query becomes:

SELECT *
FROM car LEFT JOIN driver ON (owner = name)

| REGNO | MAKE ||[COLOUR|PRICE|OWNER| NAME | DOB |
[F611 AAA|[FORD IRED 12000 [[Jim Smith |[Jim Smith |[11 Jan 1980 |
D111 BBB |SKODA |BLUE 11000 |[Jim Smith |[Jim Smith|[11 Jan 1980 |
|A155 BDE|[MERCEDES|[BLUE [22000 |Bob Smith||Bob Smith|[23 Mar 1981|
IK555 GHT|[FIAT IGREEN [[6000 |[Bob Jones |[Bob Jones |[3 Dec 1986 |
[SC04 BFE [SMART |[BLUE |[13000 |

The OUTER JOIN fills in the missing data (for the things which do not satisfy the rules) with

NULLSs. Note that if you swap CAR and DRIVER around in the JOIN statement you can write it as a
RIGHT JOIN just as easily...

SELECT *
FROM driver RIGHT JOIN car ON (owner = name)

The order of the rules in ON have no significance in deciding what is right and what is left.
FULL OUTER JOIN

First, assume that we have added a new row to DRIVER, so that it now reads as:

| NAME | DOB |
lim Smith |11 Jan 1980 |
[Bob Smith |[23 Mar 1981|
|Bob Jones ||3 Dec 1986 |
IDavid Davis|[1 Oct 1975 |

Now, David Davis does not own a car, and thus never appears in a normal inner JOIN. In an outer
join, we can have:

SELECT *
FROM car LEFT JOIN driver ON (owner = name)

’

31/08/2005

Database System Notes V3.2 Page 68 of 181

| REGNO | MAKE ||COLOUR|PRICE||OWNER| NAME || DOB |
IF611 AAA|[FORD IRED 12000 |[Jim Smith |[Jim Smith [[11 Jan 1980 |
D111 BBB [SKODA |IBLUE [[11000 [Jim Smith |[Jim Smith |[11 Jan 1980 |
|A155 BDE|MERCEDES|BLUE _ [22000 |[Bob Smith||Bob Smith|23 Mar 1981
|K555 GHT”FIAT ||GREEN ||6000 ||B0b Jones ||B0b Jones ||3 Dec 1986 |
[SC04 BFE [SMART |BLUE |[13000 |

SELECT *
FROM car RIGHT JOIN driver ON (owner = name)

| REGNO || MAKE ||COLOUR||PRICE| OWNER| NAME | DOB |
[F611 AAA|[FORD IRED 112000 [Jim Smith |Jim Smith |11 Jan 1980 |
D111 BBB [SKODA |IBLUE [11000 |Jim Smith [[Jim Smith |11 Jan 1980 |
|A155 BDE|[MERCEDES|IBLUE [22000 |Bob Smith|[Bob Smith |23 Mar 1981]
|K555 GHT”FIAT ||GREEN ||6000 ||B0b Jones ||B0b Jones ||3 Dec 1986 |

IDavid Davis||1 Oct 1975 |

In some relatively unusual queries, it might be useful if we see all the rows which obey the join
condition, followed by the rows left over from each of the tables involved in the join. This is called a
FULL OUTER JOIN and is written in SQL as FULL JOIN.

SELECT *
FROM car FULL JOIN driver ON (owner = name)

| REGNO | MAKE |[COLOUR|PRICE|OWNER| NAME | DOB |
IF611 AAA|[FORD IRED 112000 |{Jim Smith |[Jim Smith |[11 Jan 1980 |
D111 BBB |SKODA |BLUE [[11000 |Jim Smith |[Jim Smith |11 Jan 1980 |
|A155 BDE|MERCEDES|BLUE _ [22000 |Bob Smith|[Bob Smith |23 Mar 1981]
[K555 GHT|[FIAT IGREEN |[6000 |[Bob Jones|[Bob Jones |3 Dec 1986 |
[SC04 BFE |SMART |[BLUE 13000 |

|David Davis”l Oct 1975 |

Naming
In some complex queries the DBMS may not be able to identify what table an attribute belongs to.

For instance, joining two tables ALPHA and BRAVO, where both tables have a column called
NAME. Running the following:

SELECT name from ALPHA,BRAVO

would produce an error. The problem is when you say "name" is it the one in ALPHA or the one in
BRAVO? Instead you have to make the query more explicit.

What you are allowed to do is in front of a column name you can say with table that column belongs
to. If you wanted to say "name" in ALPHA, you could say alpha.name. Now it is clear what table the

31/08/2005

Database System Notes V3.2 Page 69 of 181

column belongs to, and the query will work:

SELECT alpha.name from ALPHA, BRAVO

Aliases

Sometimes you can be dealing with large table names, and finding you have to put the table name in
front of many of the attribute names. This can be a lot of typing. SQL allows you to pretend that a
table is called something else for the duration of your query. This is called aliasing. So instead of

SELECT car.owner from car

you can write

SELECT c.owner FROM car c

In this way aliases provide a shorthand way to refer to tables. In a more complex example:

SELECT c.regno,c.owner,d.dob
FROM car ¢ JOIN driver d ON (c.owner = d.name)

’

Remember you only have to use aliases if you want to, and decorate attributes with the table names
when the computer cannot work out which table attribute you are talking about.

Self Joins

Self-joins, or Equijoins, are where you want the query to use the same table more than once, but each
time you use it for a different purpose.

Consider the question "Who drives a car the same colour as Bob Smith"?

SELECT colour FROM car WHERE owner = 'Bob Smith';

SELECT owner FROM car
WHERE colour = 'BLUE'
AND owner != 'Bob Smith'
AND owner NOT NULL

owner

Jim Smith

To run this query, we need to use CAR twice. First to find the colour, and then to find the other
owners. Thus CAR is used for two different purposes. To combine these queries together, we need to
use CAR twice. To make this work, we need to use table aliases to make CAR appear to be two
different tables. After that, its easy!

SELECT other.owner
FROM car bobsmith, car other
WHERE bobsmith.colour = other.colour -- join on the colour

31/08/2005

Database System Notes V3.2 Page 70 of 181

AND bobsmith.owner = 'Bob Smith' -— In bobsmith look only for Bob Smith
AND bobsmith.owner != other.owner -- OTHER cannot be Bob Smith
AND other.owner NOT NULL -- Exclude cars without owners
owner
Jim Smith

VIEWSs

When writing queries, the query can get longer and longer. In addition, sometimes you find that a
single query uses the same rules in two different parts of the query. In programming languages you
would move the duplicated code into some sort of library of subroutines. In SQL, the idea of a
subroutine is called a VIEW.

A VIEW can be created in the DBMS, and each view represents a particular SQL query. Once the
view is created, the query it represents is hidden from the user, and instead the view appears to be
just another table. The contents of the VIEW always remains identical to the result of running the
query which the view represents.

Lets say you want a query to tell you how many drivers there are and how many cars exist in the
database. You could run two different queries:

SELECT count (*) from DRIVER;
SELECT count (*) from CAR;

Instead, lets put each of them in a VIEW

CREATE VIEW countl (total) AS SELECT count (*) from DRIVER;
CREATE VIEW count?2 (total) AS SELECT count (*) from CAR;

SELECT * from countl;

total

i

SELECT * from count2;

ota

ﬂ'
[

SELECT countl.total,count2.total from countl,count?2;

DROP View

Once you are finished with your VIEW, you can delete it. The command to do this is DROP VIEW
viewname. Continuing our countl and count2 example, to delete the countl view you would type:

DROP VIEW countl;

31/08/2005

Database System Notes V3.2 Page 71 of 181

Subqueries and Schema

Contents

Subqueries
Simple Example

ANY and ALL
IN and NOT IN for subqueries
EXISTS
o UNION
Changing Data
o INSERT
DELETE
UPDATE
View Manipulation
s VIEW update, insert and delete
Controlling Schema
o CREATE TABLE
o DROP TABLE
o ALTER TABLE
Order of Evaluation

[}
O O O O

O O O

Subqueries

One SELECT statement can be used inside another, allowing the result of executing one query to be
used in the WHERE rules of the other SELECT statement. Where one SELECT statement appears
within another SELECT statement's WHERE clause it is known as a SUBQUERY.

One limitation of subqueries is that it can only return one attribute. This means that the subquery can
only have one attribute in its SELECT line. If you supply more than one attribute the system will
report an error.

Subqueries are generally used in situations where one might normally use a self join or a view.
Subqueries tend to be much easier to understand.

Simple Example

Who in the database is older than Jim Smith?

31/08/2005

Database System Notes V3.2 Page 72 of 181

SELECT dob FROM driver WHERE name = 'Jim Smith'

WHERE dob > (SELECT dob FROM driver WHERE name = 'Jim Smith')

This subquery works well, and is simple to understand, but you must take care that the subquery
returns only 1 row. If there were two people called Jim Smith, the query would return two different
dates of birth, and this would break the query. To get around this problem, we use ANY or ALL.

ANY and ALL

This allows us to handle subqueries which return multiple rows. You still must only have a subquery
which has only a single column. If you put ANY in front of a query, then the rule you provide must
be true for at least 1 of the rows returned. If you put ALL in front of the subquery, then your rule
must be true for all the rows returned.

Question: What cars are the same colour as a car owned by Jim Smith?

Jim Smith owns two cars, and their colours are RED and BLUE. We want to know what cars are
EITHER RED or BLUE...

SELECT regno FROM car
WHERE colour = ANY (SELECT colour FROM car WHERE owner = 'Jim Smith')

~

Question: List the drivers younger than all the people who own a blue car.

This is really looking for the age of people who own a BLUE car (2 people) and listing drivers who
are younger than both of these people.

SELECT name, dob
FROM driver
WHERE dob < ALL (

SELECT dob
FROM car join driver on (owner=name)
WHERE colour = 'BLUE'

’

IN and NOT IN for subqueries

Just like IN could be used with something like ('BLUE','BLACK"), a subquery returns a similar
construct which can similarly be accessed using IN

31/08/2005

Database System Notes V3.2 Page 73 of 181

Question: Which cars the same colour as one of Jim Smith's cars?

SELECT regno FROM car
WHERE colour IN (SELECT colour FROM car WHERE owner = 'Jim Smith')

’

Question: Which cars do not have the same colour as one of Jim Smith's cars?

SELECT regno FROM car
WHERE colour NOT IN (SELECT colour FROM car WHERE owner = 'Jim Smith')

’

EXISTS

In almost all cases, when a question involves uniqueness then you can do it with a subquery and
EXISTS or NOT EXISTS. The EXISTS operator is a simple test, which is TRUE if the subquery
returns at least 1 row, and FALSE if it return 0 rows. NOT EXISTS does the opposite.

Question: List the colours which are only used once in the database.

SELECT colour
FROM car a
WHERE exists (

select colour -- does not matter what is selected
from car b -— As we use CAR twice, call this one b
where a.colour = b.colour -- CAR rows with the same colour as a
and a.regno != b.regno -- but a car different to the one in a

)7

Remember that the rules are processed for each row of a. So the query looks at row 1 of a, runs the
subquery, and decides if the colour is unique. It then moves to row 2 of a and reruns the subquery.

UNION

Sometimes it is desirable to merge the results of two queries together to form a single output table.
This is known as UNION. UNION only works if each query in the statement has the same number of
columns, and each of the corresponding columns are of the same type.

Question: List all the drivers in the DRIVER table, and show how many cars each of them own. If a
driver owns no cars, the total should be 0. We will assume that David Davis has been added to the
DRIVER table, but that he owns no cars.

SELECT name, count (*)
FROM driver JOIN car on (name = ownher)

| NAME |[count(*)|
lJim Smith |[2 |
[Bob Smith]|1 |
|Bob Jones ||1 |

This does not show David Davis, but we could write a query to find people who own no cars using
NOT IN and a subquery.

SELECT name, 0

31/08/2005

Database System Notes V3.2 Page 74 of 181

FROM driver
WHERE name not in (select owner from car);

[_name o
[David Davis|o]

Now, we can merge these two results together using UNION, and thus:

SELECT name, count (*)

FROM driver JOIN car on (name = ownher)
UNION

SELECT name, 0

FROM driver

WHERE name not in (select owner from car)

| NAME ||c0unt(*)|

lim Smith |2 |
IBob Smith |1

|David DaVis”O

|
|Bob Jones ||1 |
|

Changing Data
So far we have just looked at SELECT but we need to be able to do other operations as follows:

o INSERT - which writes new rows into a database
o DELETE - which deletes rows from a database
e UPDATE - which changes values in existing rows

INSERT

The INSERT command allows you to put new rows into a table.

INSERT INTO table name
[(column list)] VALUES (value list)

The column_list lists columns to be assigned values. It can be omitted if every column is to be

assigned a value. The value_list is a set of literal values giving the value for each column in
column_list or CREATE TABLE order.

insert into driver

values ('Jessie James', '31 Nov 1892"');
insert into driver (name, dob)

values ('John Johnstone','l Aug 1996');

Usually you do not have to specify the columns in the insert statement, but doing so is useful in case
someone changes the table at some point in the future. By mentioning the column names you are
certain that the values specified are going into the correct columns.

DELETE

The DELETE command allows you to remove rows from a table.

31/08/2005

Database System Notes V3.2 Page 75 of 181

DELETE FROM table name [WHERE condition];
the rows of table name which satify the condition are deleted.

Example:

DELETE FROM car -— Delete all rows from CAR

’

DELETE from car
WHERE owner is null -— Delete any row where a car has no owner

’

UPDATE

UPDATE allows you to write queries which change data already in a table. It cannot add more rows
or take rows away.

UPDATE table name
SET column name = expression, {column name=expression}
[WHERE condition]

For example, lets set all BLUE cars to GREEN.

UPDATE car SET colour = 'GREEN'
WHERE colour = 'BLUE';

This next example shows how the update calculation can be an expression. Lets add VAT of 17.5%
to all prices in the CAR table. This is equivalent to multiplying the car price by 1.175.

UPDATE car SET price = price * 1.175
View Manipulation

When is the contents of a view calculated? The process of the DBMS calculating the contents of a
view is called 'materialising the view'. In theory this could be:

e When it is defined or
e when it is accessed

If it is the former then subsequent inserts, deletes and updates would not be visible. If the latter then
changes will be seen.

Some systems allow you to chose when views are materialised. Most do not, and views are
materialised whenever they are accessed, thus all changes to the tables on which the view query is
based can instantly be seen.

VIEW update, insert and delete

Can we change the data viewed through a view?

e Yes, provided the primary key of all the base tables which make up the view are present in the
view.

31/08/2005

Database System Notes V3.2 Page 76 of 181

Base Table - A Baze Table - B
A# B#

View Definition

View

A# B#

Figure : VIEW which can be updated

e The following view cannot be changed because we have no means of knowing which row of B
to modify

Base Table - A Baze Table - B
A# B#

View Definition

View

A#

Figure : VIEW which cannot be updated

Controlling Schema

Up to this point we have assumed that the database has already been created. However, someome

31/08/2005

Database System Notes V3.2 Page 77 of 181

must be able to create the schema to allow table structures to be defined. In the ER diagram design
phase, the process will take you from written specifications to sets of relations, including foreign key
definitions. At that point the relations have to be rewritten into schema creation queries.

CREATE TABLE

CREATE TABLE allows the user to create the table schemas. It has a relatively simple structure,
consisting of the column names and the type of each column. We have not really mentioned column
types, but there are quite a few different types in an DBMS. The important ones are:

e INTEGER - A column to hold numbers. Numbers with decimal points are not permitted.
Examples: 5, 6, 10006.

e REAL - A column to hold numbers which have decimal points. Examples could be pounds and
pence. Examples 5.6, 1000.35567.

e DECIMAL - A column to hold numbers which can have decimal points. It is used as
DECIMAL(n) or DECIMAL(n,m), where n is the size of the number allowed before the
decimal point, and m is the size allowed after the decimal point. If you do not specify m, it is
assumed to be 0.

e VARCHAR - ASCII characters with a length ranging from 0 characters up to some limit. It is
usually used as VARCHAR(n), where n is the maximum number of characters which can be
stored. Examples include 'Hello' and 'surprise birthday'.

¢ CHAR - ASCII characters with a fixed length. It is usually used as CHAR(n), where n is the
fixed length of the string. If you try to write a string into a CHAR which is shorter than n,
spaces are added to the end of your string. For example, with CHAR(S), storing 'Hia' results in
'Hia .

e DATE - A column which holds a day/month/year date. Examples include 'l Jan 2003' and '31
Dec 1885".

The actual syntax of the statement is:

CREATE TABLE tablename (
colname type Optionaladditionalinfo
,colname type Optionaladditionalinfo
,colname type Optionaladditionalinfo
,optionaladditionalinfo

)7

At the end of each column definition you can have some additional info. This could be range rules or
key information. Common ones to use include

o REFERENCES - This field is a foreign key which refers to the specified table and key. An
example could be
A INTEGER REFERENCES B(C)
which would indicate that column A (an integer) is a foreign key which refers to a table called
B, and relates to column C in B (C should be the primary key in a properly designed database).
e PRIMARY KEY - This column is the primary key.
e NOT NULL - This column must have a value.

At the end of the definition you can have some other types of optional additional information. There
is a significant number of possibilities here, but the main ones include:

e PRIMARY KEY (columnl,column2,...) - If the table is has a composite primary key (more
than 1 column makes up the key) then you must define the key in this way at the end of the
definition.

e FOREIGN KEY (columnl,column2,...) REFERENCES othertable - If the table has a

31/08/2005

Database System Notes V3.2 Page 78 of 181

relationship with another table which has a composite key, then the columns in this table
which form the foreign keys must be listed using this syntax.

Example

As some examples, lets defined the DRIVER and CAR tables.

CREATE TABLE driver (

name varchar (30) PRIMARY KEY
, dob DATE NOT NULL

)i

CREATE TABLE car (

regno VARCHAR (8) PRIMARY KEY

,make VARCHAR (20)

,colour VARCHAR (30)

,price DECIMAL (8, 2)

,owner VARCHAR (30) REFERENCES driver (name)

)7

Or, using the additional information aspects of the syntax, the following statements create the same
table structures.

CREATE TABLE driver (
name varchar (30)
, dob DATE NOT NULL
, PRIMARY KEY (name)

) ;

CREATE TABLE car (

regno VARCHAR (8)
,make VARCHAR (20)
,colour VARCHAR (30)
,price DECIMAL (8, 2)
,owner VARCHAR (30)

, PRIMARY KEY (regno)
, FOREIGN KEY (owner) REFERENCES driver
) i

DROP TABLE

Eventually there may come a time when you want to remove a table. The basic syntax is:

DROP TABLE tablename

The only difficulty in dropping tables is that you cannot drop a table if another table refers to it via a
foreign key relationship. This would break the referential integrity rules. Thus in our example we can
drop CAR and then DRIVER, but we cannot drop DRIVER first.

DROP TABLE car;
DROP TABLE driver;

ALTER TABLE

Most database management systems allow you to alter the definition of a table after it has been
constructed, using the ALTER TABLE command. There are many variants to this, and far too much
to discuss in this introduction. One simple example would be if there was a need to add a column to
DRIVER to indicate the driver's address. This could be done by:

31/08/2005

Database System Notes V3.2 Page 79 of 181

ALTER TABLE driver ADD address varchar (50);

Order of Evaluation

In summary, consider the following information, which depicts the various options of the SELECT
statement, and the approximate order in which each statement is evaluated:

SELECT [distinct] column names 7,6 eliminate unwanted data
FROM table list 1 Cartesian Product
[WHERE conditions] 2 Filter rows
[GROUP BY colum list 3 Group Rows

[HAVING conditions]] 4 eliminate unwanted groups
[ORDER BY column list [DESC]] 5 Sort rows

31/08/2005

Database System Notes V3.2 Page 80 of 181

Chapter 4 - Normalisation

Normalisation techniques for relations and raw data examples, covering unnormalised forms through
to 5Sth Normal Form.

o Normalisation ONF-3NF
o Normalisation BCNF and Example

31/08/2005

Database System Notes V3.2 Page 81 of 181

Normalisation

Contents

o What is normalisation?
o Integrity Constraints
o Understanding Data
o Student #2 - Flattened Table
e First Normal Form
o Flatten table and Extend Primary Key
o Insertion anomaly:
o Update anomaly
o Deletion anomaly
Decomposing the relation
Second Normal Form
Third Normal Form
Summary: INF

Summary: 2NF
Summary: 3NF

What is normalisation?

Normalisation is the process of taking data from a problem and reducing it to a set of relations while
ensuring data integrity and eliminating data redundancy

e Data integrity - all of the data in the database are consistent, and satisfy all integrity
constraints.

e Data redundancy — if data in the database can be found in two different locations (direct
redundancy) or if data can be calculated from other data items (indirect redundancy) then the
data is said to contain redundancy.

Data should only be stored once and avoid storing data that can be calculated from other data already
held in the database. During the process of normalisation redundancy must be removed, but not at
the expense of breaking data integrity rules.

If redundancy exists in the database then problems can arise when the database is in normal
operation:

¢ When data is inserted the data must be duplicated correctly in all places where there is
redundancy. For instance, if two tables exist for in a database, and both tables contain the
employee name, then creating a new employee entry requires that both tables be updated with
the employee name.

e When data is modified in the database, if the data being changed has redundancy, then all
versions of the redundant data must be updated simultaneously. So in the employee example a
change to the employee name must happen in both tables simultaneously.

The removal of redundancy helps to prevent insertion, deletion, and update errors, since the data is
only available in one attribute of one table in the database.

The data in the database can be considered to be in one of a number of ‘normal forms'. Basically the

31/08/2005

Database System Notes V3.2 Page 82 of 181

normal form of the data indicates how much redundancy is in that data. The normal forms have a
strict ordering:

15t Normal Form

214 Normal Form

3t Normal Form

BCNF

b=

There are other normal forms, such as 4th and 5th normal forms. They are rarely utilised in system
design and are not considered further here.

To be in a particular form requires that the data meets the criteria to also be in all normal forms

before that form. Thus to be in 219 normal form the data must meet the criteria for both 2°4 normal

lst

form and 1" normal form. The higher the form the more redundancy has been eliminated.

Integrity Constraints

An integrity constraint is a rule that restricts the values that may be present in the database. The
relational data model includes constraints that are used to verify the validity of the data as well as
adding meaningful structure to it:

e entity integrity :

The rows (or tuples) in a relation represent entities, and each one must be uniquely identified. Hence
we have the primary key that must have a unique non-null value for each row.

o referential integrity :

This constraint involves the foreign keys. Foreign keys tie the relations together, so it is vitally
important that the links are correct. Every foreign key must either be null or its value must be the
actual value of a key in another relation.

Understanding Data

Sometimes the starting point for understanding data is given in the form of relations and functional
dependancies. This would be the case where the starting point in the process was a detailed
specification of the problem. We already know what relations are. Functional dependancies are rules
stating that given a certain set of attributes (the determinant) determines a second set of attributes.

The definition of a functional dependency looks like A->B. In this case B is a single attribute but it
can be as many attributes as required (for instance, X->J,K,L.,M). In the functional dependency, the
determinant (the left hand side of the -> sign) can determine the set of attributes on the right hand
side of the -> sign. This basically means that A selects a particular value for B, and that A is unique.
In the second example X is unique and selects a particular set of values for J,K,L, and M. It can also
be said that B is functionally dependent on A. In addition, a particular value of A ALWAYS gives
you a particular value for B, but not vice-versa.

Consider this example:
R(matric_no, firstname, surname, tutor number, tutor name)

tutor number -> tutor name

31/08/2005

Database System Notes V3.2 Page 83 of 181

Here there is a relation R, and a functional dependency that indicates that:

e instances of tutor number are unique in the data

¢ from the data, given a tutor number, it is always possible to work out the tutor name.

e As an example tutor number 1 may be “Mr Smith”, but tutor number 10 may also be “Mr
Smith”. Given a tutor number of 1, this is ALWAYS “Mr Smith”. However, given the name
“Mr Smith” it is not possible to work out if we are talking about tutor 1 or tutor 10.

There is actually a second functional dependency for this relation, which can be worked out from the
relation itself. As the relation has a primary key, then given this attribute you can determine all the
other attributes in R. This is an implied functional dependency and is not normally listed in the list of
functional dependents.

Extracting understanding

It is possible that the relations and the determinants have not yet been defined for a problem, and
therefore must be calculated from examples of the data. Consider the following Student table.

Student - an unnormalised tablewith repeating groups

|matric_n0||Name ||date_0f_birth||subject ||grade|

Databases
960100 Smith, J ||14/11/1977 Soft Dev
ISDE

Soft Dev
ISDE

Databases
960120 Moore, T||11/03/1970 Soft Dev
Workshop

960145 |[Smith, J [09/01/1972 |Databases |

Databases
Soft Dev
ISDE
Workshop

960105 |[White, A||10/05/1975

QOWP|WEI|[|T >0

vy

960150 |[Black, D ||21/08/1973

(wN@Rwve)

The subject/grade pair is repeated for each student. 960145 has 1 pair while 960150 has four.
Repeating groups are placed inside another set of parentheses. From the table the following relation
is generated:

Student(matric_no, name, date of birth, (subject, grade))

The repeating group needs a key in order that the relation can be correctly defined. Looking at the
data one can see that grade repeats within matric_no (for instance, for 960150, the student has 2 D
grades). However, subject never seems to repeat for a single matric_no, and therefore is a candidate
key in the repeating group.

Whenever keys or dependencies are extracted from example data, the information extracted is only
as good as the data sample examined. It could be that another data sample disproves some of the key
selections made or dependencies extracted. What is important however is that the information
extracted during these exercises is correct for the data being examined.

31/08/2005

Database System Notes V3.2

Page 84 of 181

Looking at the data itself, we can see that the same name appears more than once in the name
column. The name in conjunction with the date of birth seems to be unique, suggesting a functional
dependency of:

name, date of birth -> matric no

This implies that not only is the matric_no sufficient to uniquely identify a student, the student’s
name combined with the date of birth is also sufficient to uniquely identify a student. It is therefore
possible to have the relation Student written as:

Student(matric_no, name, date_of birth, (subject, grade))

As guidance in cases where a variety of keys could be selected one should try to select the relation

with the least number of attributes defined as primary keys.

Flattened Tables

Note that the student table shown above explicitly identifies the repeating group. It is also possible
that the table presented will be what is called a flat table, where the repeating group is not explicitly

shown:

Student #2 - Flattened Table

|matric_n0||name ||date_0f_birth||Subject ||grade|
1960100 ||Smith, J |[14/11/1977 |Databases|C |
960100 |[Smith, J |[14/11/1977 ||Soft Dev |[A |
1960100 ||Smith, J |[14/11/1977 |ISDE |D |
1960105 |[White, A|[10/05/1975 | Soft Dev |B |
1960105 |[White, A|[10/05/1975 |ISDE |B |
960120 |[Moore, T|[11/03/1970 | Databases|[A |
1960120 |[Moore, T|[11/03/1970 |Soft Dev |B |
960120 |[Moore, T|[11/03/1970 |Workshop|/C |
1960145 ||Smith, J [09/01/1972 | Databases|B |
1960150 |Black, D|[21/08/1973 |Databases|B |
1960150 |Black, D|[21/08/1973 |Soft Dev |[D |
960150 |[Black, D|[21/08/1973 |ISDE |[lc |
960150 |[Black, D|[21/08/1973 | Workshop|[B |

The table still shows the same data as the previous example, but the format is different. We have
removed the repeating group (which is good) but we have introduced redundancy (which is bad).

Sometimes you will miss spotting the repeating group, so you may produce something like the
following relation for the Student data.

Student(matric_no, name, date_of birth, subject, grade)

matric_no -> name, date of birth
name, date of birth -> matric no

31/08/2005

Database System Notes V3.2 Page 85 of 181

This data does not explicitly identify the repeating group, but as you will see the result of the
normalisation process on this relation produces exactly the same relations as the normalisation of the
version that explicitly does have a repeating group.

First Normal Form

First normal form (1NF) deals with the “shape' of the record type

A relation is in 1NF if, and only if, it contains no repeating attributes or groups of attributes.
Example:

The Student table with the repeating group is not in INF

It has repeating groups, and it is called an "unnormalised table'.

Relational databases require that each row only has a single value per attribute, and so a repeating
group in a row is not allowed.

To remove the repeating group, one of two things can be done:

¢ cither flatten the table and extend the key, or
e decompose the relation- leading to First Normal Form

Flatten table and Extend Primary Key

The Student table with the repeating group can be written as:

Student(matric_no, name, date_of birth, (subject, grade))

If the repeating group was flattened, as in the Student #2 data table, it would look something like:
Student(matric_no, name, date of birth, subject, grade)

Although this is an improvement, we still have a problem. matric_no can no longer be the primary
key - it does not have an unique value for each row. So we have to find a new primary key - in this
case it has to be a compound key since no single attribute can uniquely identify a row. The new

primary key is a compound key (matrix no + subject).

We have now solved the repeating groups problem, but we have created other complications. Every
repetition of the matric_no, name, and data_of birth is redundant and liable to produce errors.

With the relation in its flattened form, strange anomalies appear in the system. Redundant data is the
main cause of insertion, deletion, and updating anomalies.

Insertion anomaly:
With the primary key including subject, we cannot enter a new student until they have at least one
subject to study. We are not allowed NULLSs in the primary key so we must have an entry in both

matric_no and subject before we can create a new record.

e This is known as the insertion anomaly. It is difficult to insert new records into the database.
e On a practical level, it also means that it is difficult to keep the data up to date.

Update anomaly

31/08/2005

Database System Notes V3.2 Page 86 of 181

If the name of a student were changed for example Smith, J. was changed to Green, J. this would
require not one change but many one for every subject that Smith, J. studied.

Deletion anomaly

If all of the records for the "Databases' subject were deleted from the table,we would inadvertently
lose all of the information on the student with matric no 960145. This would be the same for any

student who was studying only one subject and the subject was deleted. Again this problem arises
from the need to have a compound primary key.

Decomposing the relation

e The alternative approach is to split the table into two parts, one for the repeating groups and
one of the non-repeating groups.
e the primary key for the original relation is included in both of the new relations

Record

|matric_n0||subject ||grade|
960100 |[Databases|/C |
960100 |[Soft Dev [[A |
960100 [ISDE |D |
960105 |[Soft Dev B |
|
|
|

960105 |ISDE B

1960150 |[Workshop|B

Student

|matric_n0||name ||date_0f_birth|
1960100 |[Smith,J |[14/11/1977 |
960105 | White,A][10/05/1975 |
1960120 |[Moore,T|[11/03/1970 |
|
|

1960145 |[Smith,J][09/01/1972
960150 |Black,D[[21/08/1973

e We now have two relations, Student and Record.
¢ Student contains the original non-repeating groups
e Record has the original repeating groups and the matric_no

Student(matric_no, name, date of birth)
Record(matric_no, subject, grade)

Matric_no remains the key to the Student relation. It cannot be the complete key to the new Record
relation - we end up with a compound primary key consisting of matric_no and subject. The
matric no is the link between the two tables - it will allow us to find out which subjects a student is

31/08/2005

Database System Notes V3.2 Page 87 of 181

studying . So in the Record relation, matric_no is the foreign key.

This method has eliminated some of the anomalies. It does not always do so, it depends on the
example chosen

e In this case we no longer have the insertion anomaly

¢ It is now possible to enter new students without knowing the subjects that they will be
studying

e They will exist only in the Student table, and will not be entered in the Record table until they
are studying at least one subject.

e We have also removed the deletion anomaly

o If all of the "databases' subject records are removed, student 960145 still exists in the Student
table.

e We have also removed the update anomaly

Student and Record are now in First Normal Form.

Second Normal Form

Second normal form (or 2NF) is a more stringent normal form defined as:

A relation is in 2NF if, and only if, it is in 1NF and every non-key attribute is fully functionally
dependent on the whole key.

Thus the relation is in 1NF with no repeating groups, and all non-key attributes must depend on the
whole key, not just some part of it. Another way of saying this is that there must be no partial key
dependencies (PKDs).

The problems arise when there is a compound key, e.g. the key to the Record relation - matric_no,
subject. In this case it is possible for non-key attributes to depend on only part of the key - i.e. on
only one of the two key attributes. This is what 2NF tries to prevent.

Consider again the Student relation from the flattened Student #2 table:

Student (matric_no, name, date of birth, subject, grade)

e There are no repeating groups

e The relation is already in INF

e However, we have a compound primary key - so we must check all of the non-key attributes
against each part of the key to ensure they are functionally dependent on it.

e matric_no determines name and date_of birth, but not grade.

e subject together with matric no determines grade, but not name or date of birth.

e So there is a problem with potential redundancies

A dependency diagram is used to show how non-key attributes relate to each part or combination of
parts in the primary key.

31/08/2005

Database System Notes V3.2 Page 88 of 181

Student

matric no | natne date_of bith grade

subiect
NN,

Fully Dependent

Figure : Dependency Diagram

This relation is not in 2NF

It appears to be two tables squashed into one.

the solution is to split the relation up into its component parts.

separate out all the attributes that are solely dependent on matric_no

put them in a new Student_details relation, with matric_no as the primary key
separate out all the attributes that are solely dependent on subject.

in this case no attributes are solely dependent on subject.

separate out all the attributes that are solely dependent on matric_no + subject
put them into a separate Student relation, keyed on matric no + subject

Student Details

matrix_no name date_of_birth | Al attributes in each relation are fully
% ') n functionally dependent upon its

Student ' primary key

matrix_no subject grade These relations are now in 2NF

\ /

Figure : Dependencies after splitting

Interestingly this is the same set of relations as when we recognized that there were repeating terms
in the table and directly removed the repeating terms. It should not really matter what process you
followed when normalizing, as the end result should be similar relations.

Third Normal Form

3NF is an even stricter normal form and removes virtually all the redundant data :

o A relation is in 3NF if, and only if, it is in 2NF and there are no transitive functional
dependencies

Transitive functional dependencies arise:

when one non-key attribute is functionally dependent on another non-key attribute:
FD: non-key attribute -> non-key attribute

and when there is redundancy in the database

By definition transitive functional dependency can only occur if there is more than one non-key
field, so we can say that a relation in 2NF with zero or one non-key field must automatically be in
3NF.

31/08/2005

Database System Notes V3.2 Page 89 of 181

|pr0j ect_no”manager”address |

b1

||Black,B ||32 High Street|

p2

” Smith.J ”11 New Stroe t| Project has more than one non-key field so we must

check for transitive dependency:

b3

||B1ack,B ||32 High Street|

[p4

||B1ack,B ||32 High Street|

Project |mjL_no”manager|

Manager | manager|[address |

address depends on the value in the manager column

¢ every time B Black is listed in the manager column, the address column has the value *32 High

Street'. From this the relation and functional dependency can be implied as:
Project(project no, manager, address)

manager -> address
in this case address is transitively dependent on manager. Manager is the determinant - it
determines the value of address. It is transitive functional dependency only if all attributes on
the left of the “-> are not in the key but are all in the relation, and all attributes to the right of
the “->” are not in the key with at least one actually being in the relation.
Data redundancy arises from this

e we duplicate address if a manager is in charge of more than one project

causes problems if we had to change the address- have to change several entries, and this
could lead to errors.

The solution is to eliminate transitive functional dependency by splitting the table

create two relations - one with the transitive dependency in it, and another for all of the
remaining attributes.

split Project into Project and Manager.

the determinant attribute becomes the primary key in the new relation

manager becomes the primary key to the Manager relation

the original key is the primary key to the remaining non-transitive attributes

in this case, project no remains the key to the new Projects table.

|p1 ||Black,B |
Ip2 [Smith,J |
|p3 ||Black,B |
|p4 ||Black,B |

IBlack,B |[32 High Street|
ISmith,J |11 New Street|

Now we need to store the address only once

If we need to know a manager's address we can look it up in the Manager relation

The manager attribute is the link between the two tables, and in the Projects table it is now a
foreign key.

These relations are now in third normal form.

Summary: 1NF

31/08/2005

Database System Notes V3.2 Page 90 of 181

A relation is in 1NF if it contains no repeating groups

To convert an unnormalised relation to 1NF either:

Flatten the table and change the primary key, or

Decompose the relation into smaller relations, one for the repeating groups and one for the
non-repeating groups.

Remember to put the primary key from the original relation into both new relations.

This option is liable to give the best results.

Summary: 2NF

A relation is in 2NF if it contains no repeating groups and no partial key functional
dependencies

Rule: A relation in INF with a single key field must be in 2NF

To convert a relation with partial functional dependencies to 2NF. create a set of new
relations:

One relation for the attributes that are fully dependent upon the key.

¢ One relation for each part of the key that has partially dependent attributes

Summary: 3NF

A relation is in 3NF if it contains no repeating groups, no partial functional dependencies, and
no transitive functional dependencies

To convert a relation with transitive functional dependencies to 3NF, remove the attributes
involved in the transitive dependency and put them in a new relation

e Rule: A relation in 2NF with only one non-key attribute must be in 3NF
¢ In a normalised relation a non-key field must provide a fact about the key, the whole key and

nothing but the key.
Relations in 3NF are sufficient for most practical database design problems. However, 3NF
does not guarantee that all anomalies have been removed.

31/08/2005

Database System Notes V3.2 Page 91 of 181

Normalisation - BCNF

Contents

Boyce-Codd Normal Form (BCNF)
Normalisation to BCNF - Example 1

Summary - Example 1

Example 2
Problems BCNF overcomes

Returning to the ER Model
Normalisation Example

o Library

Overview

e normalise a relation to Boyce Codd Normal Form (BCNF)
e Normalisation example

Boyce-Codd Normal Form (BCNF)

e When a relation has more than one candidate key, anomalies may result even though the
relation is in 3NF.

3NF does not deal satisfactorily with the case of a relation with overlapping candidate keys
i.e. composite candidate keys with at least one attribute in common.

BCNF is based on the concept of a deferminant.

A determinant is any attribute (simple or composite) on which some other attribute is fully
functionally dependent.

e A relation is in BCNF is, and only if, every determinant is a candidate key.

Consider the following relation and determinants.

R(a,b,c,d)
a,c->b,d
a,d->b

Here, the first determinant suggests that the primary key of R could be changed from a,b to a,c. If
this change was done all of the non-key attributes present in R could still be determined, and
therefore this change is legal. However, the second determinant indicates that a,d determines b, but
a,d could not be the key of R as a,d does not determine all of the non key attributes of R (it does not
determine c). We would say that the first determinate is a candidate key, but the second determinant

is not a candidate key, and thus this relation is not in BCNF (but is in 3" normal form).

Normalisation to BCNF - Example 1

31/08/2005

Database System Notes V3.2 Page 92 of 181

|Patient N0||Patient Name”Appointment Id||Time||D0ct0r|
|1 ||John ||0 ||09:OO||Zorro |
2 |IKerr I& 09:00|[Killer |
13 |Adam 1 [110:00||Zorro |
l4 [Robert o [113:00|[Killer |
I5 | Zane 1 [[14:00||Zorro |

Lets consider the database extract shown above. This depicts a special dieting clinic where the each
patient has 4 appointments. On the first they are weighed, the second they are exercised, the third
their fat is removed by surgery, and on the fourth their mouth is stitched closed... Not all patients
need all four appointments! If the Patient Name begins with a letter before “P” they get a morning
appointment, otherwise they get an afternoon appointment. Appointment 1 is either 09:00 or 13:00,
appointment 2 10:00 or 14:00, and so on. From this (hopefully) make-believe scenario we can
extract the following determinants:

DB(Patno,PatName,appNo,time,doctor)

Patno -> PatName
Patno,appNo -> Time,doctor
Time -> appNo

Now we have to decide what the primary key of DB is going to be. From the information we have,
we could chose:

DB(Patno,PatName,appNo,time,doctor) (example 1a)
or

DB(Patno,PatName,appNo,time,doctor) (example 1b)

Example 1a - DB(Patno,PatName,appNo,time,doctor)

¢ INF Eliminate repeating groups.
None:

DB(Patno,PatName,appNo,time,doctor)

e 2NF Eliminate partial key dependencies
DB (Patno, appNo, time, doctor)
R1 (Patno, PatName)

¢ 3NF Eliminate transitive dependencies

None: so just as 2NF

¢ BCNF Every determinant is a candidate key
DB(Patno,appNo,time,doctor)
R1(Patno,PatName)
e Go through all determinates where ALL of the left hand attributes are present in a relation and

31/08/2005

Database System Notes V3.2 Page 93 of 181

at least ONE of the right hand attributes are also present in the relation.
Patno -> PatName
Patno is present in DB, but not PatName, so not relevant.
Patno,appNo -> Time,doctor
All LHS present, and time and doctor also present, so relevant. Is this a candidate key?
Patno,appNo IS the key, so this is a candidate key. Thus this is OK for BCNF compliance.
Time -> appNo
Time is present, and so is appNo, so relevant. Is this a candidate key. If it was then we could
rewrite DB as:

DB(Patno,appNo,time,doctor)
This will not work, as you need both time and Patno together to form a unique key. Thus this
determinate is not a candidate key, and therefore DB is not in BCNF. We need to fix this.
BCNF: rewrite to

DB(Patno,time,doctor)

R1(Patno,PatName)

R2(time,appNo)

time is enough to work out the appointment number of a patient. Now BCNF is satisfied, and the
final relations shown are in BCNF.

Example 1b - DB(Patno,PatName,appNo,time,doctor)

INF Eliminate repeating groups.

None:

DB(Patno,PatName,appNo,time,doctor)

2NF Eliminate partial key dependencies

DB (Patno, time, doctor)
R1 (Patno, PatName)
R2 (time, appNo)

None:

3NF Eliminate transitive dependencies

so just as 2NF

BCNF Every determinant is a candidate key

DB (Patno, time, doctor)
R1 (Patno, PatName)
R2 (time, appNo)

Go through all determinates where ALL of the left hand attributes are present in a relation and
at least ONE of the right hand attributes are also present in the relation.

Patno -> PatName

Patno is present in DB, but not PatName, so not relevant.

Patno,appNo -> Time,doctor

Not all LHS present, so not relevant.

Time -> appNo

Time is present, and so is appNo, so relevant. This is a candidate key. However, Time is
currently the key for R2, so satisfies the rules for BCNF.

31/08/2005

Database System Notes V3.2 Page 94 of 181

e BCNF: as 3NF
DB(Patno.time,doctor)
R1(Patno,PatName)
R2(time,appNo)

Summary - Example 1

This example has demonstrated three things:

BCNF is stronger than 3NF, relations that are in 3NF are not necessarily in BCNF
BCNEF is needed in certain situations to obtain full understanding of the data model
there are several routes to take to arrive at the same set of relations in BCNF.
Unfortunately there are no rules as to which route will be the easiest one to take.

Example 2

Grade_ report (StudNo, StudName, (Major,Adviser,
(CourseNo,Ctitle, InstrucName, InstructLocn, Grade)))

¢ Functional dependencies

StudNo -> StudName

CourseNo -> Ctitle, InstrucName
InstrucName -> InstrucLocn
StudNo, CourseNo,Major -> Grade
StudNo,Major -> Advisor
Advisor -> Major

o Unnormalised

Grade_ report (StudNo, StudName, (Major,Advisor,
(CourseNo,Ctitle, InstrucName, InstructLocn, Grade)))

e INF Remove repeating groups

Student (StudNo, StudName)

StudMajor (StudNo,Major,Advisor)

StudCourse (StudNo,Major, CourseNo,
Ctitle, InstrucName, InstructLocn, Grade)

e 2NF Remove partial key dependencies

Student (StudNo, StudName)

StudMajor (StudNo,Major,Advisor)

StudCourse (StudNo,Major, CourseNo, Grade)

Course (CourseNo,Ctitle, InstrucName, InstructLocn)

¢ 3NF Remove transitive dependencies

Student (StudNo, StudName)

StudMajor (StudNo,Major,Advisor)
StudCourse (StudNo,Major, CourseNo, Grade)
Course (CourseNo,Ctitle, InstrucName)
Instructor (InstructName, InstructLocn)

e BCNF Every determinant is a candidate key

31/08/2005

Database System Notes V3.2 Page 95 of 181

Student : only determinant is StudNo
StudCourse: only determinant is StudNo,Major
Course: only determinant is CourseNo
Instructor: only determinant is InstrucName
StudMajor: the determinants are
StudNo,Major, or

Adviser

Only StudNo,Major is a candidate key.

e BCNF

Student (StudNo, StudName)

StudCourse (StudNo,Major, CourseNo, Grade)
Course (CourseNo,Ctitle, InstrucName)
Instructor (InstructName, InstructLocn)
StudMajor (StudNo,Advisor)

Adviser (Adviser,Major)

Problems BCNF overcomes

ISTUDENT|| MAJOR ||[ADVISOR
[123 [PHYSICS |[EINSTEIN|
123 IMUSIC |[MOZART |
456 IBIOLOGY|[DARWIN |
789 IPHYSICS |[BOHR |
1999 [PHYSICS |[EINSTEIN|

o If the record for student 456 is deleted we lose not only information on student 456 but also
the fact that DARWIN advises in BIOLOGY

¢ we cannot record the fact that WATSON can advise on COMPUTING until we have a student
majoring in COMPUTING to whom we can assign WATSON as an advisor.

In BCNF we have two tables:

ISTUDENTI|(ADVISOR|
[123 |[EINSTEIN|
123 IMOZART |
456 IDARWIN |
789 |IBOHR |
1999 |[EINSTEIN |

IADVISOR|MAJOR |
[EINSTEIN |[PHYSICS |
IMOZART |MUSIC |
IDARWIN |BIOLOGY]
IBOHR |[PHYSICS |

31/08/2005

Database System Notes V3.2 Page 96 of 181

Returning to the ER Model

e Now that we have reached the end of the normalisation process, you must go back and
compare the resulting relations with the original ER model

¢ You may need to alter it to take account of the changes that have occurred during the
normalisation process Your ER diagram should always be a prefect reflection of the model
you are going to implement in the database, so keep it up to date!

e The changes required depends on how good the ER model was at first!

Normalisation Example

Library

Consider the case of a simple video library. Each video has a title, director, and serial number.
Customers have a name, address, and membership number. Assume only one copy of each video
exists in the library. We are given:

video (title,director, serial)
customer (name, addr, memberno)
hire (memberno, serial, date)

title->director, serial
serial->title
serial->director

name, addr -> memberno
memberno -> name, addr
serial,date -> memberno

What normal form is this?

¢ No repeating groups, so at least INF

e 2NF? There is a composite key in hire. Investigate further... Can memberno in hire be found
with just serial or just date. NO. Therefore relation is in at least 2NF.

e 3NF? serial->director is a non-key dependency. Therefore the relations are currently in 2NF.

Convert from 2NF to 3NF.

Rewrite

video (title,director, serial)
To

video (title, serial)

serial (serial,director)

Therefore the new relations become:
video (title, serial)
serial (serial,director)
customer (name, addr, memberno)
hire (memberno, serial, date)

In BCNF? Check if every determinant is a candidate key.

video (title, serial)
Determinants are:
title->director,serial Candidate key
serial->title Candidate key
video in BCNF

31/08/2005

Database System Notes V3.2

serial (serial,director)
Determinants are:
serial->director
serial in BCNF

customer (name, addr, memberno)
Determinants are:

name, addr -> memberno

memberno -> name, addr
customer in BCNF

hire (memberno, serial, date)
Determinants are:

serial,date -> memberno

hire in BCNF

Candidate key

Candidate key
Candidate key

Candidate key

Therefore the relations are also now in BCNF.

Page 97 of 181

31/08/2005

Database System Notes V3.2 Page 98 of 181

Chapter 5 - Relational Algebra

Relational algebra introduction, including a full algebraic syntax.

o Introduction to Relational Algebra
e Algebraic format Relational Algebra

31/08/2005

Database System Notes V3.2 Page 99 of 181

Relational Algebra

Contents

Terminology
Operators - Write

Operators - Retrieval
Relational SELECT

Relational PROJECT
SELECT and PROJECT

Set Operations - semantics
SET Operations - requirements
UNION Example
INTERSECTION Example
DIFFERENCE Example
CARTESIAN PRODUCT
CARTESIAN PRODUCT example
JOIN Operator

JOIN Example

Natural Join

OUTER JOINs

OUTER JOIN example 1
OUTER JOIN example 2

In order to implement a DBMS, there must exist a set of rules which state how the database system
will behave. For instance, somewhere in the DBMS must be a set of statements which indicate than
when someone inserts data into a row of a relation, it has the effect which the user expects. One way
to specify this is to use words to write an “essay' as to how the DBMS will operate, but words tend to
be imprecise and open to interpretation. Instead, relational databases are more usually defined using
Relational Algebra.

Relational Algebra is :

o the formal description of how a relational database operates
e an interface to the data stored in the database itself
¢ the mathematics which underpin SQL operations

Operators in relational algebra are not necessarily the same as SQL operators, even if they have the
same name. For example, the SELECT statement exists in SQL, and also exists in relational algebra.
These two uses of SELECT are not the same. The DBMS must take whatever SQL statements the
user types in and translate them into relational algebra operations before applying them to the
database.

Terminology

Relation - a set of tuples.

Tuple - a collection of attributes which describe some real world entity.

Attribute - a real world role played by a named domain.

Domain - a set of atomic values.

Set - a mathematical definition for a collection of objects which contains no duplicates.

31/08/2005

Database System Notes V3.2 Page 100 of 181

Operators - Write

e INSERT - provides a list of attribute values for a new tuple in a relation. This operator is the
same as SQL.

¢ DELETE - provides a condition on the attributes of a relation to determine which tuple(s) to
remove from the relation. This operator is the same as SQL.

e MODIFY - changes the values of one or more attributes in one or more tuples of a relation, as
identified by a condition operating on the attributes of the relation. This is equivalent to SQL
UPDATE.

Operators - Retrieval

There are two groups of operations:

e Mathematical set theory based relations:

UNION, INTERSECTION, DIFFERENCE, and CARTESIAN PRODUCT.
e Special database operations:

SELECT (not the same as SQL SELECT), PROJECT, and JOIN.

Relational SELECT

SELECT is used to obtain a subset of the tuples of a relation that satisfy a select condition.

For example, find all employees born after 1st Jan 1950:

SELECTqop 101/0an/1050 (€mMPloyee)

Relational PROJECT

The PROJECT operation is used to select a subset of the attributes of a relation by specifying the
names of the required attributes.

For example, to get a list of all employees surnames and employee numbers:

PROJECT employee)

surname, empno (

SELECT and PROJECT

SELECT and PROJECT can be combined together. For example, to get a list of employee numbers
for employees in department number 1:
PROJECT (SELECT gupp=1 Cmployee])

ST
Mspping this barktn 5L gives: \‘

SELEC T etrpmn

FEOM arploye:
WHEFE depro = 1;

Figure : Mapping select and project

31/08/2005

Database System Notes V3.2 Page 101 of 181

Set Operations - semantics

Consider two relations R and S.

e UNION of R and S
the union of two relations is a relation that includes all the tuples that are either in R or in S or
in both R and S. Duplicate tuples are eliminated.
e INTERSECTION of R and S
the intersection of R and S is a relation that includes all tuples that are both in R and S.
e DIFFERENCE of R and S
the difference of R and S is the relation that contains all the tuples that are in R but that are not

in S.
SET Operations - requirements

For set operations to function correctly the relations R and S must be union compatible. Two
relations are union compatible if

¢ they have the same number of attributes
o the domain of each attribute in column order is the same in both R and S.

UNION Example
R
A | N D —
B > R UNION S
D 3 | - [T A 1
F 4 = B 2
E 5 - C 2
- | D 3
S :""'ﬁ- E 5
A 1 ™~ F | 4
C 2 E 4
D 3 | |—
E 4
Figure : UNION
INTERSECTION Example

31/08/2005

Database System Notes V3.2 Page 102 of 181

4
A 1
B) R [INTERSECTION 5
D 3
F | 4 a 11
E 5 D 3
5
A 1
C 2
D 3
E 4
Figure : Intersection
DIFFERENCE Example
R
g ; E. DIFFERENCE 5
D 3
F 4 B Z
E s F 4
E 3
>
A 1 S DIFFERENCE R
C 2
D 3 C 2
E 4 E 4
Figure : DIFFERENCE
CARTESIAN PRODUCT

The Cartesian Product is also an operator which works on two sets. It is sometimes called the
CROSS PRODUCT or CROSS JOIN.

It combines the tuples of one relation with all the tuples of the other relation.

CARTESIAN PRODUCT example

31/08/2005

Database System Notes V3.2 Page 103 of 181

E RCROSS S
El 1 n 1 [a 1 F 4 | a 1
E 2 & 1| 2 F s | 2
D E] n 1| D 3 F 1 | D 3
F 1 & 1 | E 4 F : | E 4
E E] E 1 | & 1 E i | a 1
. E PR 2 E i | o 2
B 2 | D 3 E i | o 3
A L E 2 | E 4 E 5 | E 4
£ 2 D 3 | & 1
D 2 T | ¢ P
E L) FRE 3
D 3 | E 4

Figure : CARTESIAN PRODUCT

JOIN Operator

JOIN is used to combine related tuples from two relations:

e In its simplest form the JOIN operator is just the cross product of the two relations.

¢ As the join becomes more complex, tuples are removed within the cross product to make the
result of the join more meaningful.

e JOIN allows you to evaluate a join condition between the attributes of the relations on which
the join is undertaken.

The notation used is

R JOIN. S

join condition

JOIN Example

E Told ColB R JOIN E.Cols = 3.3CalA g
L.} 1 A 1| &
B £ D 3 | D 3
D 3 E : | E 4
F 4
E 5
. JOIN g

& E.ColB =5 5CalB

S5Cnld SCniB

] [w] o] S

N FER N (S
2l L [s:] e
= o fea | e—
ol [wll (o] fi=
= o o | —

Figure : JOIN

Natural Join

Invariably the JOIN involves an equality test, and thus is often described as an equi-join. Such joins
result in two attributes in the resulting relation having exactly the same value. A "natural join' will

31/08/2005

Database System Notes V3.2 Page 104 of 181

remove the duplicate attribute(s).

¢ In most systems a natural join will require that the attributes have the same name to identify
the attribute(s) to be used in the join. This may require a renaming mechanism.

e If you do use natural joins make sure that the relations do not have two attributes with the
same name by accident.

OUTER JOINSs

Notice that much of the data is lost when applying a join to two relations. In some cases this lost data
might hold useful information. An outer join retains the information that would have been lost from
the tables, replacing missing data with nulls.

There are three forms of the outer join, depending on which data is to be kept.
e LEFT OUTER JOIN - keep data from the left-hand table

e RIGHT OUTER JOIN - keep data from the right-hand table
e FULL OUTER JOIN - keep data from both tables

OUTER JOIN example 1

B Chid CBiE RLEFTOUTERIOIN g mois =< gogs, =

—_

L)

&
D
E

b S

| | | |
o | e | e | B =

Pa b | LD [

5 R RIGH

4 SChiE OUTERJOIN

S 5Calh ©

|

Himfgls| 9 (= |o || os=

|| || £
Ju | L2 B | =
L] Leal [i3
b | s L | — E

Figure : OUTER JOIN (left/right)

OUTER JOIN example 2

EFULLOUTERJOIN g —2gops =

& 1 & 1| & 1
B 2 5] 3| D
D 3 E 5 | E 4
F 4 B 3 -
E 5 T T

- C 2

5 sold SCoIR

& 1
5 2
D 3
E 4

Figure : OUTER JOIN (full)

31/08/2005

Database System Notes V3.2 Page 105 of 181

Relational Algebra - Example

Contents

Symbolic Notation
Usage

Rename Operator
Derivable Operators

Equivalence

Equivalences
Comparing RA and SQL

Comparing RA and SQL

Consider the following SQL to find which departments have had employees on the "Further
Accounting' course.

SELECT DISTINCT dname
FROM department, course, empcourse, employee
WHERE cname = "Further Accounting'
AND course.courseno = empcourse.courseno
AND empcourse.empno = employee.empno
AND employee.depno = department.depno;

The equivalent relational algebra is

PROJECT, ... (department JOINdeprlo - depno (
PROJECTdepno (employee JOIN@mno: empno (
PROJECTempno (empcourse JOINCOUISGHO = courseno (
PROJECTcourseno <SELECTcname = “Further Accounting' course)
))
))
))
Symbolic Notation

From the example, one can see that for complicated cases a large amount of the answer is formed
from operator names, such as PROJECT and JOIN. It is therefore commonplace to use symbolic
notation to represent the operators.

SELECT ->c (sigma)
PROJECT -> n(p1)
PRODUCT -> x(times)
JOIN -> |x| (bow-tie)
UNION -> U (cup)
INTERSECTION -> N (cap)
DIFFERENCE -> - (minus)
RENAME ->p (rho)

Usage

The symbolic operators are used as with the verbal ones. So, to find all employees in department 1:

31/08/2005

Database System Notes V3.2 Page 106 of 181

SELECT e pn0 - 1 (
becomes odqmo:zl(employee)

employee)

Conditions can be combined together using * (AND) and v (OR). For example, all employees in
department 1 called "Smith":

SELECT
becomes Odepno

depno = 1 » surname = “Smith' (employee)

= 1 ~ surname = "Smith' (employee)

The use of the symbolic notation can lend itself to brevity. Even better, when the JOIN is a natural
join, the JOIN condition may be omitted from [x|. The earlier example resulted in:

PROJECT .. (department JOINge .o - gepno (
PROJECT 4op,, (employee JOIN oo — cnpno (
PROJECTempnO (empcourse JOINCOUISGHO = courseno (
PROJECTcourseno (SELECTcname = “Further Accounting' course)))))))
becomes
Tgname (department [x| (
Hgepno (€mMployee [x|
Meppno (€Mpcourse | x| (
Meourseno (ocname = 'Further Accounting' course)))))))

Rename Operator

The rename operator returns an existing relation under a new name. p , (B) is the relation B with its
name changed to A. For example, find the employees in the same Department as employee 3.

pemp2 .surname, emp?.forenames (

Cjemployee.empno = 3 » employee.depno = emp?2.depno (
employee x (pemﬁemployee)

Derivable Operators

¢ Fundamental operators:o, w, x, U, -, p
e Derivable operators: |X|,N

A 0 B=]a A -B) |

o

31/08/2005

Database System Notes V3.2 Page 107 of 181

Equivalence

A‘X‘CB Aad 1_[atl,aZ,...aN(Gc(A x B))

e where c is the join condition (eg A.al = B.al),
e and al,a2,...aN are all the attributes of A and B without repetition.

c is called the join-condition, and is usually the comparison of primary and foreign key. Where there
are N tables, there are usually N-1 join-conditions. In the case of a natural join, the conditions can be
missed out, but otherwise missing out conditions results in a cartesian product (a common mistake to
make).

Equivalences

The same relational algebraic expression can be written in many different ways. The order in which
tuples appear in relations is never significant.

e AXB®BXxA

ANB®BNA

AUB<BUA

(A - B) is not the same as (B - A)

Cc1 (GCZ(A)) ad Sc2 (GCI(A)) it Gep A cZ(A)
nal(A) < nal(nal,etc(A))

where etc represents any other attributes of A.
many other equivalences exist.

While equivalent expressions always give the same result, some may be much easier to evaluate that
others.

When any query is submitted to the DBMS, its query optimiser tries to find the most efficient
equivalent expression before evaluating it.

Comparing RA and SQL

Relational algebra:

is closed (the result of every expression is a relation)
has a rigorous foundation

has simple semantics

is used for reasoning, query optimisation, etc.
SQL:

is a superset of relational algebra

has convenient formatting features, etc.
provides aggregate functions

has complicated semantics

is an end-user language.

Comparing RA and SQL

Any relational language as powerful as relational algebra is called relationally complete.

A relationally complete language can perform all basic, meaningful operations on relations.

31/08/2005

Database System Notes V3.2 Page 108 of 181

Since SQL is a superset of relational algebra, it is also relationally complete.

31/08/2005

Database System Notes V3.2 Page 109 of 181

Chapter 6 - Implementations

Coverage of concurrency requirements, concurrency control through locking and transactions, and
storage structure implementation approaches.

Concurrency using Transactions

Concurrency

Recovery
DBMS Implementation

31/08/2005

Database System Notes V3.2 Page 110 of 181

Concurrency using Transactions

Contents

o Transactions
Transaction Schedules
Lost Update scenario.

[]

[]

e Uncommitted Dependency
¢ Inconsistency

o Serialisability
[]
[]
[]
[]

Precedence Graph
Precedence Graph : Method
Example 1

Example 2

The goal in a “concurrent' DBMS is to allow multiple users to access the database simultaneously
without interfering with each other.

A problem with multiple users using the DBMS is that it may be possible for two users to try and
change data in the database simultaneously. If this type of action is not carefully controlled,
inconsistencies are possible.

To control data access, we first need a concept to allow us to encapsulate database accesses. Such
encapsulation is called a "Transaction'.

Transactions

e Transaction (ACID)
¢ unit of logical work and recovery
o A - atomicity (for integrity)
o C - consistency preservation
o I - isolation
o D - durability
e Available in SQL
e Some applications require nested or long transactions

After work is performed in a transaction, two outcomes are possible:
¢ Commit - Any changes made during the transaction by this transaction are committed to the
database.

e Abort - All the changes made during the transaction by this transaction are not made to the
database. The result of this is as if the transaction was never started.

Transaction Schedules

A transaction schedule is a tabular representation of how a set of transactions were executed over
time. This is useful when examining problem scenarios. Within the diagrams various nomenclatures
are used:

31/08/2005

Database System Notes V3.2

e READ(a) - This is a read action on an attribute or data item called "a'.
e WRITE(x,a) - This is a write action on an attribute or data item called "a', where the value "x'

1s written into "a'.

Page 111 of 181

e tn (e.g. t1,t2,t10) - This indicates the time at which something occurred. The units are not
important, but tn always occurs before tn+1.

Consider transaction A, which loads in a bank account balance X (initially 20) and adds 10 pounds to

it. Such a schedule would look like this

|Time||Transacti0n A |
tI ||TOTAL:=READ(X) |
2 |[TOTAL:=TOTAL+10|
I3 ||WRITE(TOTAL,X) |

Now consider that, at the same time as transaction A runs, transaction B runs. Transaction B gives all

accounts a 10% increase. Will X be 32 or 33?

. . Value . Value
Time Transaction A TOTAL Transaction B BALANCE
1 || | |IBALANCE:=READ(X) 120

2 | TOTAL:=READ(X) [[20

3 ||[TOTAL:=TOTAL+10|j30

t4 |[WRITE(TOTAL.X) |j30

sl |

IBALANCE:=BALANCE*110%][22

o | |

||WRITE(BALANCE.X) 122

Whoops... X is 22! Depending on the interleaving, X can also be 32, 33, or 30. Lets classify

erroneous scenarios.

Lost Update scenario.

|Time||Transacti0n A||Transaction B|
i]x=READR)]| |

2| [Y=READR) |
3 || WRITE(X,R) || |
4| [WRITE(Y,R) |

Transaction A's update is lost at t4, because Transaction B overwrites it. B missed A's update at t3 as

it got the value of R at t2.

31/08/2005

Database System Notes V3.2 Page 112 of 181

Uncommitted Dependency

|Time||Transaction A||Transaction B|

|| [WRITE(X.,R) |
2 |[Y=READ®R) | |
3| IABORT |

Transaction A is allowed to READ (or WRITE) item R which has been updated by another
transaction but not committed (and in this case ABORTed).

Inconsistency
|Time||X ||Y ||Z ||TransactionA || Transaction B
| | Action IsuM ||

2 |40 ||50 |30 |[SUM+=READ(Y) 90 ||

|
|
t1 |40 |50 |30 |[SUM:=READ(X) [l40 | |
|
|

13 [40 |50 |30 | [ACCI=READ(Z)

4 40][50]20 || [WRITE(ACC1-10,2)|
15 J40][50 J[20 | [ACC2=READ(X) |
ltc |50 |50 |20 || [WRITE(AC2+10,X) |
t7 |50 |50 |20 || [COMMIT |

7 |[50 ||50 |20 |[SUM+=READZ) [110 || |
| ||SUM should have been 120...” |

Serialisability

e A “schedule' is the actual execution sequence of two or more concurrent transactions.
e A schedule of two transactions T1 and T2 is “serialisable' if and only if executing this schedule
has the same effect as either T1;T2 or T2;T1.

Precedence Graph

In order to know that a particular transaction schedule can be serialized, we can draw a precedence
graph. This is a graph of nodes and vertices, where the nodes are the transaction names and the
vertices are attribute collisions.

The schedule is said to be serialised if and only if there are no cycles in the resulting diagram.

Precedence Graph : Method

To draw one;
o Draw a node for each transaction in the schedule

e Where transaction A writes to an attribute which transaction B has read from, draw an line
pointing from B to A.

31/08/2005

Database System Notes V3.2 Page 113 of 181

o Where transaction A writes to an attribute which transaction B has written to, draw a line
pointing from B to A.
o Where transaction A reads from an attribute which transaction B has written to, draw a line

pointing from B to A.
Example 1
Consider the following schedule:
B
ITime| TRAN1 | TRAN2 | e
i JREAD®) | |
2 |READ®B) | |/ TRANI
EI IREAD(A) |
14| IREAD(B) | ~_—"
15 |WRITE(xB)| |
| [WRITEG 5] .
Example 2

Consider the following schedule:

ITime| TRAN1 || TRAN2 | TRAN3

1 |READA) | [
= |READ(A)

|
|
2 |READ®B) | | |
|
|

4| [READ(B)|

15| [[IWRITE(x,A)|

6 JWRITEV.O]| [|
7 JWRITEw.B)| [|
18 || | [WRITE(z,0)]

>

e
A

31/08/2005

Database System Notes V3.2

Concurrency

Contents

e Locking

Locking - Uncommitted Dependency
Deadlock

Deadlock Handling

Deadlock Resolution

Two-Phase Locking

Other Database Consistency Methods
Timestamping rules

Locking
A solution to enforcing serialisability?

read (shareable) lock
write (exclusive) lock
coarse granularity
easier processing

less concurrency

fine granularity

more processing
higher concurrency

Page 114 of 181

Many systems use locking mechanisms for concurrency control. When a transaction needs an
assurance that some object will not change in some unpredictable manner, it acquires a lock on that

object.

lock.

Locking - Uncommitted Dependency

Locking solves the uncommitted dependency problem.

|Time||Transacti0n A ||Transacti0n B||L0ck on R|

i | IWRITEQR) [l-=X |
2 |[READ R (WAIT)| X

|
3]lwait.. |ABORT Ix=-_ |
t4 |[READ R (CONT)| - = |

A transaction holding a read lock is permitted to read an object but not to change it.

More than one transaction can hold a read lock for the same object.

Usually, only one transaction may hold a write lock on an object.

On a transaction schedule, we use 'S' to indicate a shared lock, and “X' for an exclusive write

31/08/2005

Database System Notes V3.2 Page 115 of 181

Deadlock

Deadlock can arise when locks are used, and causes all related transactions to WAIT forever...
|time||Transacti0n A ||Transacti0n B ||L0ck State|

L] | Xy |

i [WRITE@X) | =x]- |

2| IWRITE@Y) |X [-=X]

3 J[READ(Y) (WAIT)]| [

3 | .WAIT... IREAD(X) (WAIT)|[X [IX |

3 | .WAIT... ... WAIT... Ix x|

The "lost update' senario results in deadlock with locks. So does the “inconsistency' scenario.

|time||Transacti0n A ||Transaction B ||L0ck R|
il JREAD®R) [k=S |
2| IREAD(R) IS=s |
t3 |[WRITE(p,R) (WAIT)| s |
3 |..wait... IWRITE(q,R) (WAIT)||S |
|t3 ||...wait... ||...wait... ||S |
Deadlock Handling

e Deadlock avoidance
o pre-claim strategy used in operating systems
o not effective in database environments.
e Deadlock detection
o whenever a lock requests a wait, or on some perodic basis.
o if a transaction is blocked due to another transaction, make sure that that transaction is
not blocked on the first transaction, either directly or indirectly via another transaction.

Deadlock Resolution

If a set of transactions is considered to be deadlocked:

e choose a victim (e.g. the shortest-lived transaction)

e rollback "victim' transaction and restart it.

e The rollback terminates the transaction, undoing all its updates and releasing all of its locks.

e A message is passed to the victim and depending on the system the transaction may or may not
be started again automatically.

Two-Phase Locking

The presence of locks does not guarantee serialisability. If a transaction is allowed to release locks
before the transaction has completed, and is also allowed to acquire more (or even the same) locks

31/08/2005

Database System Notes V3.2 Page 116 of 181

later then the benifit or locking is lost.

If all transactions obey the “two-phase locking protocol', then all possible interleaved executions are
guaranteed serialisable.

The two-phase locking protocol:

e Before operating on any item, a transaction must acquire at least a shared lock on that item.
Thus no item can be accessed without first obtaining the correct lock.
o After releasing a lock, a transaction must never go on to acquire any more locks.

The technical names for the two phases of the locking protocol are the ‘lock-acquisition phase' and
the “lock-release phase'.

Other Database Consistency Methods

Two-phase locking is not the only approach to enforcing database consistency. Another method used
in some DMBS is timestamping. With timestamping, there are no locks to prevent transactions
seeing uncommitted changes, and all physical updates are deferred to commit time.

¢ locking synchronises the interleaved execution of a set of transactions in such a way that it is
equivalent to some serial execution of those transactions.

e timestamping synchronises that interleaved execution in such a way that it is equivalent to a
particular serial order - the order of the timestamps.

Timestamping rules

The following rules are checked when transaction T attempts to change a data item. If the rule
indicates ABORT, then transaction T is rolled back and aborted (and perhaps restarted).

o If T attempts to read a data item which has already been written to by a younger transaction
then ABORT T.

o If T attempts to write a data item which has been seen or written to by a younger transaction
then ABORT T.

If transaction T aborts, then all other transactions which have seen a data item written to by T must
also abort. In addition, other aborting transactions can cause further aborts on other transactions.
This is a "cascading rollback'.

31/08/2005

Database System Notes V3.2 Page 117 of 181

Recovery

Contents

e Recovery: the dump
Recovery: the transaction log
Deferred Update

Example

Immediate Update

Example
Rollback

A database might be left in an inconsistent state when:

deadlock has occurred.

a transaction aborts after updating the database.
software or hardware errors.

incorrect updates have been applied to the database.

If the database is in an inconsistent state, it is necessary to recover to a consistent state. The basis of
recovery is to have backups of the data in the database.

Recovery: the dump

The simplest backup technique is ‘the Dump'.

e entire contents of the database is backed up to an auxiliary store.

must be performed when the state of the database is consistent - therefore no transactions
which modify the database can be running

dumping can take a long time to perform

you need to store the data in the database twice.

as dumping is expensive, it probably cannot be performed as often as one would like.

a cut-down version can be used to take “snapshots' of the most volatile areas.

Recovery: the transaction log

A technique often used to perform recovery is the transaction log or journal.

e records information about the progress of transactions in a log since the last consistent state.

o the database therefore knows the state of the database before and after each transaction.

e every so often database is returned to a consistent state and the log may be truncated to remove
committed transactions.

¢ when the database is returned to a consistent state the process is often referred to as
“checkpointing'.

Deferred Update

Deferred update, or NO-UNDO/REDOQO, is an algorithm to support ABORT and machine failure
scenarios.

31/08/2005

Database System Notes V3.2

Page 118 of 181

While a transaction runs, no changes made by that transaction are recorded in the database.

On a commit:

The new data is recorded in a log file and flushed to disk
The new data is then recorded in the database itself.

On an abort, do nothing (the database has not been changed).
On a system restart after a failure, REDO the log.

Example

Consider the following transaction TRAN1

|Transacti0n TRAN1|

|read(A) |

lwrite(10,B)

|
lwrite(20,C) |
|

|Commit

Using deferred update, the process is:

|Time||Acti0n ||L0g |

t1 |lSTART |- |

(2 Jreadd) |- |

3 |lwrite(10.B)|[B=10 |

t4 |lwrite(20,0)|[C=20 |

t5 |[COMMIT ||[cOMMIT|
| Before | | After |

DIk || IB=¢l | [B-10
A=sic=2] Jlla=sfc=20] |

If the DMBS fails and is restarted:

The disks are physically or logically damaged then recovery from the log is impossible and
instead a restore from a dump is needed.
If the disks are OK then the database consistency must be maintained. Writes to the disk which

was in progress at the time of the failure may have only been partially done.

Parse the log file, and where a transaction has been ended with "COMMIT' apply the data part

of the log to the database.

If a log entry for a transaction ends with anything other than COMMIT, do nothing for that

transaction.

flush the data to the disk, and then truncate the log to zero.
o the process or reapplying transaction from the log is sometimes referred to as ‘rollforward'.

Immediate Update

Immediate update, or UNDO/REDO, is another algorithm to support ABORT and machine failure
scenarios.

31/08/2005

Database System Notes V3.2 Page 119 of 181

While a transaction runs, changes made by that transaction can be written to the database at
any time. However, the original and the new data being written must both be stored in the log
BEFORE storing it on the database disk.

On a commit:

All the updates which has not yet been recorded on the disk is first stored in the log file and
then flushed to disk.

The new data is then recorded in the database itself.

e On an abort, REDO all the changes which that transaction has made to the database disk using

the log entries.
On a system restart after a failure, REDO committed changes from log.

Example

Using immediate update, and the transaction TRANT again, the process is:

|Time||Acti0n ||LOG |

t1 |lSTART |- |

(2 Jreada) |- |

t3 |lwrite(10,B)|[Was B == 6, now 10|

|t4 ||write(20,C)||Was C==2, now 20|

t5 |[COMMIT ||[cOMMIT |
| Before | | During | | After |

DISK|_ |l B=¢lf | [B=1ojf || |B-10]
A=slic=2 fja=sfc=2f [jja=sfic-20 |

If the DMBS fails and is restarted:

The disks are physically or logically damaged then recovery from the log is impossible and
instead a restore from a dump is needed.

If the disks are OK then the database consistency must be maintained. Writes to the disk which
was in progress at the time of the failure may have only been partially done.

Parse the log file, and where a transaction has been ended with ‘COMMIT' apply the ‘new
data' part of the log to the database.

If a log entry for a transaction ends with anything other than COMMIT, apply the "old data'
part of the log to the database.

flush the data to the disk, and then truncate the log to zero.

Rollback

The process of undoing changes done to the disk under immediate update is frequently referred to as
rollback.

e Where the DBMS does not prevent one transaction from reading uncommitted modifications

(a “dirty read") of another transaction (i.e. the uncommitted dependency problem) then aborting
the first transaction also means aborting all the transactions which have performed these dirty
reads.

e as a transaction is aborted, it can therefore cause aborts in other dirty reader transactions,

31/08/2005

Database System Notes V3.2 Page 120 of 181

which in turn can cause other aborts in other dirty reader transaction. This is referred to as
“cascade rollback’'.

31/08/2005

Database System Notes V3.2

DBMS Implementation

Contents

o Implementing a DBMS

O

Disk and Memory

e Disk Arrangements

e}

O O O O O O O

Hash tables

Binary Tree

B+ Tree Example

Index Structure and Access
Costing Index and File Access
Use of Indexes

Shadow Paging
Disk Parallelism

Implementing a DBMS

Page 121 of 181

A database management system handles the requests generated from the SQL interface, producing or
modifying data in response to these requests. This involves a multilevel processing system.

parser

T
L code cache

executer

transaction

R —

table cache

tables

31/08/2005

Database System Notes V3.2 Page 122 of 181

Figure : DBMS Execution and Parsing
This level structure processes the SQL submitted by the user or application.

e Parser: The SQL must be parsed and tokenised. Syntax errors are reported back to the user.
Parsing can be time consuming, so good quality DBMS implementations cache queries after
they have been parsed so that if the same query is submitted again the cached copy can be used
instead. To make the best use of this most systems use placeholders in queries, like:

SELECT empno FROM employee where surname = ?

The '?' character is prompted for when the query is executed, and can be supplied separately
from the query by the API used to inject the SQL. The parameter is not part of the parsing
process, and thus once this query is parsed once it need not be parsed again.

o Executer: This takes the SQL tokens and basically translates it into relational algebra. Each
relational algebra fragment is optimised, and the passed down the levels to be acted on.

e User: The concept of the user is required at this stage. This gives the query context, and also
allows security to be implemented on a per-user basis.

¢ Transactions: The queries are executed in the transaction model. The same query from the
same user can be executing multiple times in different transactions. Each transaction is quite
separate.

e Tables : The idea of the table structure is controlled at a low level. Much security is based on
the concept of tables, and the schema itself is stored in tables, as well as being a set of tables
itself.

e Table cache: Disks are slow, yet a disk is the best way of storing long-term data. Memory is
much faster, so it makes sense to keep as much table information as possible in memory. The
disk remains synchronised to memory as part of the transaction control system.

e Disks : Underlying almost all database systems is the disk storage system. This provides
storage for the DBMS system tables, user information, schema definitions, and the user data
itself. It also provides the means for transaction logging.

The 'user' context is handled in a number of different ways, depending on the database system being
used. The following diagram gives you an idea of the approach followed by two different systems,
Oracle and MySQL.

databases
users uiers
databases
tables tables
columns columns

Figure : Users and Tablespaces

31/08/2005

Database System Notes V3.2 Page 123 of 181

All users in a system have login names and passwords. In Oracle, during the connection phase, a
database name must be provided. This allows one Oracle DBMS to run multiple databases, each of
which is effectively isolated from each other.

Once a user is connected using a username and password, MySQL places the user in a particular
tablespace in the database. The name of the tablespace is independent of the same. In Oracle,
tablespaces and usernames are synonymous, and thus you should really be thinking of different
usernames for databases that serve different purposes. In MySQL the philosophy is more like a
username is a person, and that person may want to do a variety of tasks.

Once in a tablespace, a number of tables are visible, and in each table columns are visible.

In both approaches, tables in other tablespaces can be accessed. MySQL effectively sees a tablespace
and a database being the same concept, but in Oracle the two ideas are kept slightly more separate.
However, the syntax remains the same. Just as you can access column owner of table CAR, if it is in

your own tablespace, by saying

SELECT car.owner FROM car;
You can access table CAR in another tablespace (lets call it vehicles) by saying:

SELECT vehicles.car.owner FROM vehicles.car;
The appearance of this structure is similar in concept to the idea of file directories. In a database the
directories are limited to "folder.table.column", although "folder" could be a username, a tablename,

or a database, depending on the philosophy of the database management system. Even then, the
concept is largely similar.

Disk and Memory

The tradeoff between the DBMS using Disk or using main memory should be understood...

| Issue || Main Memory VS Disk |
|Speed ||Main memory is at least 1000 times faster than Disk |
g;(;rcaege Disk can hold hundreds of times more information than memory for the same cost
Persistence When the power is switched off, Disk keeps the data, main memory forgets

everything
|Access Time |[Main memory starts sending data in nanoseconds, while disk takes milliseconds |

IBlock Size |[Main memory can be accessed 1 word at a time, Disk 1 block at a time |

The DBMS runs in main memory, and the processor can only access data which is currently in main
memory. The handling of the differences between disk and main memory effectively is at the heart
of a good quality DBMS.

Disk Arrangements

Efficient processing of the DBMS requests requires efficient handling of disk storage. The important
aspects of this include:

e Index handling

31/08/2005

Database System Notes V3.2 Page 124 of 181

e Transaction Log management
e Parallel Disk Requests
¢ Data prediction

With indexing, we are concerned with finding the data we actually want quickly and efficiently,
without having to request and read more disk blocks than absolutely necessary. There are many
approaches to this, but two of the more important ones are hash tables and binary trees.

When handling transaction logs, the discussion we have had so far has been on the theory of these
techniques. In practice, the separation of data and log is much more blurred. We will look at one
technique for implementing transaction logging, known as shadow paging.

Finally, the underlying desire of a good DBMS is to never be in a position where no further work can
be done until the disk gives us some data. Instead, by using prediction, prefetching, and parallel disk
operations, it is hoped that CPU time becomes the limiting factor.

Hash tables

A Hash table is one of the simplest index structures which a database can implement. The major
components of a hash index is the "hash function" and the "buckets". Effectively the DBMS
constructs an index for every table you create that has a PRIMARY KEY attribute, like:

CREATE TABLE test (
id INTEGER PRIMARY KEY
,name varchar (100)
) ;

In table test, we have decided to store 4 rows...

insert into test wvalues (1, 'Gordon');
insert into test values (2,'Jim');
insert into test wvalues (4, 'Andrew');
insert into test wvalues (3, 'John'");

The algorithm splits the places which the rows are to be stored into areas. These areas are called
buckets. If a row's primary key matches the requirements to be stored in that bucket, then that is
where it will be stored. The algorithm to decide which bucket to use is called the hash function. For
our example we will have a nice simple hash function, where the bucket number equals the primary
key. When the index is created we have to also decide how many buckets there are. In this example
we have decided on 4.

PR
PSS

Figure : Hash Table with no collisions

31/08/2005

Database System Notes V3.2 Page 125 of 181

Now we can find id 3 quickly and easily by visiting bucket 3 and looking into it. But now the
buckets are full. To add more values we will have to reuse buckets. We need a better hash function
based on mod 4. Now bucket 1 holds ids (1,5,9...), bucket 2 holds (2,6,10...), etc.

10 |
12

6

—

.Sloru —b- hash]
c ~ ~ 5 ~

1 2 3 4

] | HERE TR |

1 2 3 | 4
\ \
10 12
'

(=}

Figure : Hash Table with collisions

We have had to put more than 1 row in some of the buckets. This is called a hash collision. The more
collisions we have the longer the collision chain and the slower the system will get. For instance,
finding id 6 means visiting bucket 2, and then finding id 2, then 10, and then finally 6.

In DBMS systems we can usually ask for a hash index for a table, and also say how many buckets
we thing we will need. This approach is good when we know how many rows there is likely to be.
Most systems will handle the hash table for you, adding more buckets over time if you have made a
mistake. It remains a popular indexing technique.

Binary Tree

Binary trees is the latest approach to providing indexes. It is much cleverer than hash tables, and
attempts to solve the problem of not knowing how many buckets you might need, and that some
collision chains might be much longer than others. It attempts to create indexes such that all rows
can be found in a similar number of steps through the storage blocks.

The state of the art in binary tree technology is called B+ Trees. With B+ tree, the order of the
original data is maintained in its creation order. This allows multiple B+ tree indices to be kept for
the same set of data records.

¢ the lowest level in the index has one entry for each data record.

¢ the index is created dynamically as data is added to the file.

e as data is added the index is expanded such that each record requires the same number of
index levels to reach it (thus the tree stays "balanced').

¢ the records can be accessed via an index or sequentially.

Each index node in a B+ Tree can hold a certain number of keys. The number of keys is often
referred to as the “order'. Unfortunately, ‘Order 2' and "Order 1' are frequently confused in the

database literature. For the purposes of our coursework and exam, 'Order 2' means that there can be
a maximum of 2 keys per index node. In this module, we only ever consider order 2 B+ trees.

B+ Tree Example

31/08/2005

Database System Notes V3.2 Page 126 of 181

Figure : Initial Stages of B+ Tree

31/08/2005

Database System Notes V3.2 Page 127 of 181

Figure : Final Stages of B+ Tree

Index Structure and Access

e The top level of an index is usually held in memory. It is read once from disk at the start of
queries.

¢ Each index entry points to either another level of the index, a data record, or a block of data

records.

The top level of the index is searched to find the range within which the desired record lies.

The appropriate part of the next level is read into memory from disc and searched.

This continues until the required data is found.

The use of indices reduce the amount of file which has to be searched.

Costing Index and File Access

¢ The major cost of accessing an index is associated with reading in each of the intermediate
levels of the index from a disk (milliseconds).

e Searching the index once it is in memory is comparatively inexpensive (microseconds).

¢ The major cost of accessing data records involves waiting for the media to recover the
required blocks (milliseconds).

o Some indexes mix the index blocks with the data blocks, which means that disk accesses can
be saved because the final level of the index is read into memory with the associated data
records.

Use of Indexes

A DBMS may use different file organisations for its own purposes.
A DBMS user is generally given little choice of file type.
A B+ Tree is likely to be used wherever an index is needed.
Indexes are generated:
o (Probably) for fields specified with 'PRIMARY KEY"' or "UNIQUE' constraints in a

31/08/2005

Database System Notes V3.2 Page 128 of 181

CREATE TABLE statement.
o For fields specified in SQL statements such as CREATE [UNIQUE] INDEX indexname
ON tablename (col [,col]...);
e Primary Indexes have unique keys.
e Secondary Indexes may have duplicates.
An index on a column which is used in an SQL "WHERE' predicate is likely to speed up an
enquiry.
this is particularly so when "='is involved (equijoin)
no improvement will occur with 'IS [NOT] NULL' statements
an index is best used on a column with widely varying data.
indexing a column of Y/N values might slow down enquiries.
an index on telephone numbers might be very good but an index on area code might be a poor
performer.
e Multicolumn index can be used, and the column which has the biggest range of values or is the
most frequently accessed should be listed first.
¢ Avoid indexing small relations, frequently updated columns, or those with long strings.
¢ There may be several indexes on each table. Note that partial indexing normally supports only
one index per table.
e Reading or updating a particular record should be fast.
e Inserting records should be reasonably fast. However, each index has to be updated too, so
increasing the indexes makes this slower.
¢ Deletion may be slow.
e particularly when indexes have to be updated.
¢ deletion may be fast if records are simply flagged as "deleted'.

Shadow Paging

The ideas proposed for implementing transactions are prefectly workable, but such an approach
would not likely be implemented in a modern system. Instead a disk block transaction technique
would more likely be used. This saves much messing around with little pieces of information, while
maintaining disk order and disk clustering.

Disk clustering is when all the data which a query would want has been stored close together on the
disk. In this way when a query is executed the DBMS can simple "scoop" up a few tracks from the
disk and have all the data it needs to complete the query. Without clustering, the disk may have to
move over the whole disk surface looking for bits of the query data, and this could be hundreds of
times slower than being able to get it all at once. Most DBMS systems perform clustering
techniques, either user-directed or automatically.

With shadow paging, transaction logs do not hold the attributes being changed but a copy of the
whole disk block holding the data being changed. This sounds expensive, but actually is highly
efficient. When a transaction begins, any changes to disk follow the following procedure:

1. If'the disk block to be changed has been copied to the log already, jump to 3.

2. Copy the disk block to the transaction log.

3. Write the change to the original disk block.
On a commit the copy of the disk block in the log can be erased. On an abort all the blocks in the log

are copied back to their old locations. As disk access is based on disk blocks, this process is fast and
simple. Most DBMS systems will use a transaction mechanism based on shadow paging.

Disk Parallelism

When you look at an Oracle database implementation, you do not see one file but several...

31/08/2005

Database System Notes V3.2 Page 129 of 181

ls -sh /u02/oradata/grussell/

2.8M controlOl.ctl
2.8M control02.ctl
2.8M control03.ctl
11M redoOl.log
11M redo02.log
11M redo03.log
351M sysaux0l.dbf
451M systemOl.dbf
3.1M tempOl.dbf
61M undotbs01.dbf
38M users01l.dbf

Each of these files has a separate function in Oracle, and requests can be fired to each of them in
parallel. The transaction logs are called redo logs. The activesql interface is stored completely in
usersO1. In my case all the files are in a single directory on a single disk, but each of the files could
be on a different disk, meaning that the seek times for each file could be in parallel.

Caching of the files is also going on behind the scenes. For instance, the activesql tables only take up
38MB, and thus can live happly in memory. When queries come in the cache is accessed first, and if
there is a need to go to disk then not only is the data requested read, but frequently data nearby that
block is also read. This is called prefetching, and is based on the idea that if [need to go to disk for
something, I might as well get more than I need. If it turns out that the other stuff is not needed, then
not much time or resource was wasted, but if the other stuff is needed in the near future, the DBMS
gains a huge performance hit. Algorithms help to steer the preloading strategy to its best possible
probability of loading useful data.

Lastly, the maximum performance of a database is achieved only when there are many queries which
can run in parallel. In this case data loaded for one query may satisfy a different query. The speed of
running 1 query on an empty machine may not be significantly different from running 100 similar
queries on the machine.

31/08/2005

Database System Notes V3.2 Page 130 of 181

Chapter 7 - Database Connectivity

Very Basic introduction to the approaches of using SQL in a programming language.

e Application Links

31/08/2005

Database System Notes V3.2 Page 131 of 181

Application Links

Contents

Some concerns
Databases in other languages
Cursors
API calls
Data Linked Visual Components
o Notes:
Using spreadsheets
e Using PHP and MySQL
o SQL Embedding
o Advantages of a standard API
e Popular APIs
o ODBC - Open Database Connectivity
o JDBC
o DBI/DBD

o Using ASP

o A sample ASP code
o Efficiency Issues

Some relational database products provide a full programming environment. Such systems include
Access, ORACLE, Paradox. At one time these integrated environments were labelled as 4GLs. This
term quickly became overused, and the term 4GL has largely fallen into disuse.

Typically such systems will include:

¢ A database engine.

e A mechanism for creating tables and entering raw data into the tables. Such a table editor will
often provide a means of establishing foreign keys and simple format restrictions.

e A tool for creating applications. Often the user will be isolated from the raw data entry
mechanism. A protected environment can be built by a database designer; users are then
presented with a simplified view of the data. Some kind of programming language is usually
built in.

e Various mechanisms for producing reports

The database engine is not normally visible to the user or even the programmer - indeed it should be
possible for the programmer to switch between engines relatively painlessly.

Some concerns

4GL systems can lead to the rapid development of relatively powerful applications. However:

e The very speed of development can cause long term difficulties - things that start as prototypes
tend to become products.

¢ The proprietary nature of the products they are based on can cause constant update problems.

e A particular product may tie systems into specific operating systems (witness the number of
dumb terminals sitting alongside PC’s)

e Vendors bring out new versions regularly, developers rarely have the luxury of working on the

31/08/2005

Database System Notes V3.2 Page 132 of 181

latest version. Program maintenance on obsolete versions of a language can be irritating
e As systems come and go it can be difficult to find expertise

Databases in other languages

Rather than developing in a proprietary, specialist language (VBA, dBase, PL) we can develop in a
well established, general purpose language (C, C++, Pascal) and link to a database engine.

There are several common means of achieving this

e SQL embedding
e using an API (application programmer interface) such as ODBC
¢ visual programming approach (Visual Basic, Delphi...)

Each of these approaches involves the notion of a cursor.

Cursors

A cursor may be viewed as a pointer into a relational table (or view). It will usually be possible for
the programmer to step forwards and backwards through the table. Individual fields may be
accessible as

o Text boxes
e Program variables
o API function calls

API calls

A database API (application program interface) is a set of function definitions that allow an
application program to connect to an SQL server. Typical API instructions include:

e connect — identify the machine to connect to and the user name and password of the account to
be used

e execute — send an SQL statement to the server. This function often returns a “handle” or

“cursor” if data is to be returned from the SQL statement

fetch — get one row of the data returned by a select statement

advance — move the cursor on to the next row

test — check if we are at the last row

close — close the connection to the database and release any resources used by the connection

Having a single standard API can give many advantages to the programmer. Ideally a programmer
can write and compile a program using a particular database product (such as Microsoft SQL Server)
then switch to another database vendor (such as Oracle) with only a trivial change to the code. As
both manufacturers provide an implementation of the API the code should work equally well in both
cases.

e programmers who use non-standard SQL lose this flexibility
¢ malevolent database vendors trick programmers into using non-standard SQL so that the code

is “locked into” a single product.

The following example is for Delphi. A similar functionality is available in VB and other languages.

31/08/2005

Database System Notes V3.2 Page 133 of 181

Tablel.First;

while not Tablel.EOF do

begin
Memol.lines.Add (Tablel.FieldByName ('NAME') .AsString) ;
Tablel.Next;

end;

This is a typical routine for reading from a table. The cursor is placed at the beginning of the file,
inside the loop two actions take place:

e Data is read from the current record and processed in some way
e The cursor is moved on to the next record

The loop terminates when the cursor attempts to move on from the final record.
Note

e The order of the elements in the table is governed by an IndexFile property of the Tablel value

o It is possible to change values by assigning the "pseudo-variable"; Tablel.FieldByName
('NAME').AsString

e Tablel.Fields[x] may be used in place of FieldByName('xyz')

Data Linked Visual Components

This example shows a data-linked text box in Visual Basic. Other components are possible. Other
languages have similar mechanisms.

. Forml M=l E3
W[«Joatsr p[M]
:iTEHH EE

Properties - Form
ITEH” TextBox =
BackCalar EHE0000005E ﬂ

BorderSiyle 1 - Fixed Single

DataSource
Diragloon

Dragkode
Ce-kl-d Trio— j

31/08/2005

Database System Notes V3.2

Properties - Formi

Page 134 of 181

| Datal Data

ANIMALS

RecardSource

i i bl*_m

Figure : Visual Components

Notes:

¢ The data source Datal has it's "record source" property set to a pre-existing table "ANIMALS"
e Datal acts as a cursor - the arrows permit users to move backwards and forward through the

table at run time

o Textl is a data-linked or data-aware component. The property Textl.DataSource is set to

Datal, the property Textl.DataField is set to "NAME"

e As the cursor moves the data displayed in Textl is updated to reflect the current row
e Textl may also be set up to automatically update the database if the user performs an edit.

Using spreadsheets

Many spreadsheets permit primitive relational operators:

=VLOOKUP (B1, Sheet2!AS1:3BS$3, 2)

We can have many of the advantages of a relational database within a spreadsheet by sticking to a

few rules:

e Store one record per row (1NF)
e Rely on VLOOKUP index into other tables
e Maintain key order

Using PHP and MySQL

selene (63)% /usr/local/mysql/bin/mysql -h
zeus -u andrew -p

mysgl> use andrew

mysgl> show tables;

R i ittt +
| Tables in andrew |
I e +
| one |
| cia |
o +

2 rows in set (0.05 sec)

mysqgl> select * from cia where
population>200000000;

31/08/2005

Database System Notes V3.2 Page 135 of 181

India	Asia	3287590	1014003817	1805000000000
Indonesia	Southeast Asia	1919440	224784210	610000000000
United States	North America	9629091	275562673	9255000000000
o ————— o t————_— o ——— tm—————————— +

3 http: //www.dcs.napier.ac.uk/...

| Eile Edit Wiew Favortes Tool »
J.ﬁ.gldress @ r.ac. Uk andrewy 3. php j & Go
=

!argentina

3 hittp: / fwww_dcs_napier. ac.uk/~andrew/3.p... [[=]
J File Edt Miew Favortes Toolz Help |

J-‘E'-EIdTESS @ k™ andrewd 3. php?countiy=argentina L! @GD

|

name: Argentina
recon; South America
population: 36955182

H
&] Done i T o Intemet 7

Figure : CGI Example

<?php
if (Scountry) {
$link = mysgl connect ("zeus","andrew", "****x**x") or die("Could not connect");
mysgl select db("andrew") or die("Could not select database");
Squery = "SELECT name, region, population FROM cia WHERE name='S$country'";
$result = mysgl query(Squery) or die("Query failed");
while ($row = mysgl fetch array(Sresult)) {
extract (Srow) ;
print "name: S$name
\n";
print "region: $region
\n";
print "population: $population
\n";
}
print "</table>\n";
mysql_free_result($result);
mysqgl close($1link);
lelse(
print "<form><input name='country'></form>\n";

}

?>

SQL Embedding

The following code is a simple embedded SQL program, written in C. The program illustrates many,
but not all, of the embedded SQL techniques. The program prompts the user for an order number,

31/08/2005

Database System Notes V3.2

Page 136 of 181

retrieves the customer number, salesperson, and status of the order, and displays the retrieved

information on the screen.

main ()
{
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

int OrderID; /* Employee ID (from user)

int CustID; /* Retrieved customer ID

char SalesPerson[10] /* Retrieved salesperson name
char Status[6] /* Retrieved order status

EXEC SQL END DECLARE SECTION;

/* Set up error processing */
EXEC SQL WHENEVER SQLERROR GOTO query error;
EXEC SQL WHENEVER NOT FOUND GOTO bad number;

/* Prompt the user for order number */
printf ("Enter order number: ");
scanf ("%d", &OrderID);

/* Execute the SQL query */

EXEC SQL SELECT CustID, SalesPerson, Status
FROM Orders
WHERE OrderID = :0rderID
INTO :CustID, :SalesPerson, :Status;

/* Display the results */

printf ("Customer number: %d\n", CustID);
printf ("Salesperson: %s\n", SalesPerson);
printf ("Status: %$s\n", Status);

exit();

query error:
printf ("SQL error: %1d\n", SQLCA.SQLCODE) ;
exit ()

bad number:

printf ("Invalid order number.\n");
exit () ;

Advantages of a standard API

*/

*/
*/

*/

An ideal API is one that connects many development platforms to many database implementations.
It allows application designers to give their users access to many databases; it allows database

manufacturers to provide an interface to many application platforms.

31/08/2005

Database System Notes V3.2

Page 137 of 181

Application platforms

Wizual Basic

Delphi

4+

CDEC

Ciracle

Access

Paradox

Figure : Standard API via ODBC

Without a standard each language would have to provide an interface to each database

implementation.

Popular APIs

ODBC - Open Database Connectivity

Specified by Microsoft and principally associated with the MS Windows platform, ODBC includes a
basic set of routines to connect to a database engine. ODBC connections can be set up from the

control panel on a windows machine.

This is a popular and successful API. Most programming languages can form an ODBC connection
without reference to the underlying database product. Most database products can fulfill the API.

£10DBC Data Source Administrator

2)X]

Systern Data Sources:

M arne] Drriver

UserDSH System DSH l File DSN] Drivers] Tracing] Connection F'u:u:uling] Ahout]

d

HETI=1P SOL Server

GlobalCar Microzoft Acceszs Driver [*.mdhb)

If

An ODBC Spstem data source storez information about how to connect to
the indicated data provider. & System data source iz vizible to all ugers
on this machine, including HT services.

Cancel

31/08/2005

Database System Notes V3.2 Page 138 of 181

Figure : ODBC Data Source Administrator
Using SQLBindCol (ODBC)

The application binds columns by calling SQLBindCol. This function binds one column at a time.
With it, the application specifies:

o The column number. Column 0 is the bookmark column; this column is not included in some
result sets. All other columns are numbered starting with the number 1. It is an error to bind a
higher numbered column than there are columns in the result set; this error cannot be detected
until the result set has been created, so it is returned by SQLFetch, not SQLBindCol.

e The C data type, address, and byte length of the variable bound to the column. It is an error to
specify a C data type to which the SQL data type of the column cannot be converted; this error
might not be detected until the result set has been created, so it is returned by SQLFetch, not
SQLBindCol.

e The address of a length/indicator buffer. The length/indicator buffer is optional. It is used to
return the byte length of binary or character data or return SQL NULL DATA if the data is
NULL.

When SQLBindCol is called, the driver associates this information with the statement. When each
row of data is fetched, it uses the information to place the data for each column in the bound
application variables.

For example, the following code binds variables to the SalesPerson and CustID columns. Data for
the columns will be returned in SalesPerson and CustID. Because SalesPerson is a character buffer,
the application specifies its byte length (11) so the driver can determine whether to truncate the data.
The byte length of the returned title, or whether it is NULL, will be returned in
SalesPersonLenOrlInd.

Because CustID is an integer variable and has fixed length, there is no need to specify its byte
length; the driver assumes it is sizeof(SQLUINTEGER). The byte length of the returned customer
ID data, or whether it is NULL, will be returned in Cust/DInd. Note that the application is only
interested in whether the salary is NULL, because the byte length is always sizeof
(SQLUINTEGER).

SQLCHAR SalesPerson([1l1l];

SQLUINTEGER CustID;

SQLINTEGER SalesPersonLenOrInd, CustIDInd;
SQLRETURN rc;

SQLHSTMT hstmt;

// Bind SalesPerson to the SalesPerson column and CustID to the CustID column.

SQLBindCol (hstmt, 1, SQL C CHAR, SalesPerson, sizeof(SalesPerson),
&SalesPersonLenOrInd) ;

SQLBindCol (hstmt, 2, SQL C ULONG, &CustID, 0, &CustIDInd);

// Execute a statement to get the sales person/customer of all orders.
SQLExecDirect (hstmt, "SELECT SalesPerson, CustID FROM Orders ORDER BY SalesPerson
SQL_NTS) ;

// Fetch and print the data. Print "NULL"™ if the data is NULL. Code to check if r
// equals SQL ERROR or SQL SUCCESS WITH INFO not shown.
while ((rc = SQLFetch(hstmt)) != SQL NO DATA) {
if (SalesPersonLenOrInd == SQL NULL DATA)
printf ("NULL") ;

31/08/2005

Database System Notes V3.2

else
printf ("%10s ", SalesPerson);
if (CustIDInd == SQL_NULL_DATA)
printf ("NULL\n") ;
else

}

printf ("$d\n", CustID);

// Close the cursor.
SQLCloseCursor (hstmt) ;

JDBC

Page 139 of 181

JDBC provides a similar level of functionality to ODBC but is specific to the Java programming
language.

The following is an example of a Java program using JDBC:

/* CIA.java
From http://sglzoo.net By Andrew Cumming

*/

import java.sqgl.*;

public class CIA{

public static void main(String[] args) {
Connection myCon;
Statement myStmt;
try{

}

Class.forName ("com.mysqgl.jdbc.Driver") .newInstance () ;

Connect to an instance of mysgl with the follow details:

machine address: pc236nt.napier.ac.uk

database : gisqg
user name : scott
password : tiger
myCon = DriverManager.getConnection (

"jdbc:mysqgl://pc236nt.napier.ac.uk/gisg"
"scott","tigexr");

myStmt = myCon.createStatement () ;

ResultSet result = myStmt.executeQuery (

"SELECT name FROM cia WHERE population>200000000");
while (result.next()) {
System.out.println(result.getString ("name"));
}

myCon.close();

catch (Exception sglEx) {

System.err.println (sqlEx) ;

Such a program may be compiled with the command:

javac CIA.java

It may be executed with the command:

java -cp mysgl-connector-java-2.0.14-bin.jar:. CIA

In the code shown a connection is made to the mysql database using the getConnection method — we

31/08/2005

Database System Notes V3.2 Page 140 of 181

specify the machine on which mysql is running (pc236nt.napier.ac.uk), the mysql database (gisq),
the user name (scott) and the password (tiger).

Having created an SQL statement we get a ResultSet object by executing the SQL statement over the
connection. For the statement given we get four rows each with a single column — these are the
countries China, India, United States and Indonesia.

The ResultSet object is a cursor that points to a single row of the result table. Initially the cursor is
considered to be pointing to before the first row, the method result.next() is the first instruction — this
moves it on to the first row.

We can retrieve data from the ResultSet using the getString method. The getString method takes
either an attribute name (as in this case) or an integer indicating the position of the attribute. In either
case the value of that field is returned as a string. Similar methods such as getlnteger are available.

DBI/DBD

An API which is growing in popularity is the DBI/DBD interface. This is an attempt to offer a
standard programmers interface to executing SQL from a variety of languages. It has many
similarities to ODBC, but without some of the complexities. It is a popular database linking API for
Perl.

The following is a fragment of Perl example code for finding out the surname of employees with a
particular department number.

my $dbh = DBI->connect ("dbname", "username", "password") ;
my $depno = 3;
my Scmd = S$Sdbh->prepare ("SELECT surname FROM employee where depno=?");
my S$res = $cmd->execute ($depno) ;
while (my ($name) = S$res->fetchrow array()) {
prnt "The employee name is $name\n";

}
Using ASP
ASP programming allows data from a database to be displayed on web pages. The ASP script (often

VBScript or JScript) is interpreted at the Web server. The web client (the browser) receives plain
HTML.

SQL Server

Web Server

Browser Browser Browser

31/08/2005

Database System Notes V3.2 Page 141 of 181

Figure : Using ASP
Typically the following sequence of events takes place:

e A web surfer requests an ASP page by linking to www.xyz.com/pagel.asp, this user is likely
to be using Netscape or IE or similar - the browser does not need any special plugins or
applets

e The Web Server (probably IIS or PWS) receives the request, examines pagel.asp in the local
file space and interprets it - the page makes reference to database db1.mdb - this causes a
request to the RDBMS

¢ The RDBMS (probably SQL Server) gets the SQL request and returns the results.

A sample ASP code

<%$SQL="SELECT carName FROM Cars ORDER BY carName"
set conn = server.createobject ("ADODB.Connection")conn.open "parking”
set cars=conn.execute (SQL) %>
<% do while not cars.eof %>
<%= cars(0) %>

<%cars.movenext
loop%>
<% cars.close %>

If you are interested in trying out ASP yourself, you will need to get an account on an IIS server.
You can try running your own server using PWS from Microsoft. Another option is to get a free
account from an online site such as www.brinkster.com

Efficiency Issues

No matter how the connection to the database is made, care should be taken to ensure that the
connection is handled efficiently. The application connecting to a database is typically executing on
a different machine to the database server. This has many advantages — and is essential if the
database is to be shared by more than one user machine. However having the application program
and the database server on different machines introduces a significant performance cost.

Establishing a connection, including time to log on and verify passwords can be costly.
Communication between the application machine and the server must go across a network — this is
usually considerably slower than the disk transfer rate. Sending SQL statements to the server is
relatively trivial however sending the rows of the results back may be significant. Programmers
should take care to request only the data they need, lazy programmers may be tempted to request
“SELECT * FROM table” when “SELECT id FROM table” would do. In the first case all fields may
be sent across the network for every row examined — this can be very expensive especially if there
are many fields or some of them are lengthy.

As an example consider a web site configured to dynamically create and serve web pages from
stored database information. When the server program is generating web pages it may be that
database connections are being created rapidly to solve relatively trivial requests. It is not uncommon
for this type of web server to be spending far more time opening and closing connections than
anything else. In such cases connection pooling may help. The web-server creates a pool of
connections and keeps these open between requests. This may be transparent to the application
programmer.

31/08/2005

Database System Notes V3.2 Page 142 of 181

Chapter 8 - MetaData

The role of the database administrator, security in a database, and the data dictionary.

o Metadata, Security, and the DBA

31/08/2005

Database System Notes V3.2 Page 143 of 181

Metadata, Security, and the DBA

Contents

e Metadata

e Security

e Granularity of DBMS Security
[]

[]

DBMS-level Protection
User-level Security for SQL
o The GRANT command
o GRANT and VIEWs
o The Database Administrator

Metadata

So far in the DBMS we have looked at table schema for our database design. We have also
considered views, and in many ways these act like tables. This table theme extends to all parts of a
DBMS. In particular, Oracle makes this theme quite explicit.

In Oracle, everything is a table. Not only the things we think of as tables, but also the system things
like user information. The philosophy is simple... implement the concept of a table and we have
everything we need to build a DBMS. This includes security concepts; secure the table concept and
everything is similarly secure.

Oracle has a special tablespace, called SYS, which holds all the system information. Various security
levels protect SYS, so dependent on your access rights you may or may not be able to see all the
tables held there. SYS in total holds hundreds of tables. The list below gives a few of these table
names.

USER_OBJECTS

TAB

USER_TABLES
USER_VIEWS

ALL TABLES
USER_TAB_COLUMNS
USER_CONSTRAINTS
USER_TRIGGERS
USER_CATALOG
DBA_USERS

31/08/2005

Database System Notes V3.2 Page 144 of 181

For example, the DBA USERS table holds user information.

SQL> describe dba_users;

Name Null? Type
USERNAME NOT NULL VARCHARZ2 (30)
USER ID NOT NULL NUMBER
PASSWORD VARCHAR?2 (30)
ACCOUNT_STATUS NOT NULL VARCHARZ2 (32)
LOCK_ DATE DATE

EXPIRY DATE DATE
DEFAULT TABLESPACE NOT NULL VARCHARZ2 (30)
TEMPORARY TABLESPACE NOT NULL VARCHARZ (30)
CREATED NOT NULL DATE
PROFILE NOT NULL VARCHARZ2 (30)
INITIAL RSRC_CONSUMER GROUP VARCHAR?2 (30)
EXTERNAL NAME VARCHAR?2 (4000)

The DBA_USERS table holds the username of users, an ID number unique for each user, their login
password, the tablespace where their personal tables and views are created, a space for calculating
the results of queries (temporary tablespace), plus many more internal details.

An example of a table holding the more internal features of the DBMS is the
USER CONSTRAINTS table. This (extensively) documents the constraints which exist between
tables in the database. A summary of the attributes is shown below.

SQL> describe user constraints;

Name Null? Type

OWNER NOT NULL VARCHARZ2 (30)
CONSTRAINT NAME NOT NULL VARCHARZ2 (30)
CONSTRAINT TYPE VARCHAR?2 (1)
TABLE NAME NOT NULL VARCHARZ2 (30)
DEFERRABLE VARCHAR?2 (14)
DEFERRED VARCHAR?2 (9)
LAST CHANGE DATE

Here a row links the owner of the constraint to a constraint name and type. This constraint is on a
table name. The date when this change was made is recorded. Oracle allows constraint checking to
be put off till the end of a transaction, and this is known as DEFERRING. If a constraint can be
deferred then it will be DEFERRABLE, and if it is currently deferred that too can be recorded.

31/08/2005

Database System Notes V3.2 Page 145 of 181

select owner,table name,constraint name,constraint type
from all constraints
where owner = 'DBRW'
and table name in ('EMPLOYEE', "JOBHISTORY', 'DEPARTMENT"')

’

|OWNER|TABLE NAME|CONSTRAINT NAME|CON|
IDBRW |DEPARTMENT |[SYS C0010801 P |
IDBRW |[EMPLOYEE [[SYS C0010803 P |
IDBRW |[EMPLOYEE [[SYS C0010804 IR |
IDBRW [JOBHISTORY |[SYS C0010807 P |
IDBRW |[JOBHISTORY [SYS 0010808 IR |

From the tutorials you may remember these tables. The constraints indicate that the DEPARTMENT
has only a PRIMARY KEY constraint. EMPLOYEE and JOBHISTORY also have primary key
constraints, but also have some foreign key referential integrity constraints (R). The constraint names
are automatically generated when the tables are created. These names can be useful, as attempting to
delete table DEPARTMENT results in a error indicating that this would violate constraint

SYS C0010804, and using this table shows that DEPARTMENT must have a foreign key
relationship from EMPLOYEE, and therefore EMPLOYEE must be dropped first.

There is a great deal of metadata in a DBMS, extending well beyond the implementation of the user
schema. This includes support for application links and schema documentation (such as comments).
Exploring this metadata can give a valuable insight into DMBS construction and performance issues.

Security

Security of the database involves the protection of the database against:

o unauthorised disclosures
o alteration
e destruction

The protection which security gives is usually directed against two classes of user

¢ Stop people without database access from having any form of access.
e Stop people with database access from performing actions on the database which are not
required to perform their duties.

There are many aspects to security
e Legal, social and ethical aspects

Legally there is the Data Protection Act, which places restrictions on databases which contain
information on living people. This was created to protect the public from data contained on a
computer, about themselves, to which the public had previously no legal right of access. Information
on computers can be wrong, and decisions made on wrong information concerns the public and
additionally is of no benefit to the company holding the data. The act supports the idea of the public
querying data, and indicating errors in that data.

31/08/2005

Database System Notes V3.2 Page 146 of 181

However, just because a database is legal does not make it socially or ethically acceptable. Collating
medical records on computer for a hospital is acceptable, but not having enough security to prevent
insurance companies accessing the database and using that as a basis for rejecting life assurance
applications could be considered questionable. Frequently it is best to place the tightest restrictions
on who can access data, and where necessary security is deliberately relaxed to allow only legitimate
queries to take place.

¢ Physical controls

Security often begins with physical controls. If a person cannot enter the building where the database
runs and is accessed, then that person cannot access the database. Usually the construction of
security is a layered approach, where a person bent on accessing the database must penetrate
multiple levels of security. The simple precaution of having all the database access points behind
locked doors can only add to the security of the system.

¢ Policy questions

Security of a database is often the enforcement in the database of the company policy. All companies
should have a policy statement, listing what is acceptable and what is not. Companies with weak
policy statements will often have the weakest security. At a minimum, it should be policy that data
stored in the database should not be made available to outside agents without written consent from a
Managing Director. Without a policy statement, it is hard to argue that an employee has actually
done anything wrong...

e Operational problems

If only a single person has access to a database, security is certainly higher than if many people have
access. However, if all the people in the UK had to phone the same one person to find out what their
bank balance was the whole system would quickly become unworkable. Security considerations
often have to be balanced against operational issues.

o Hardware controls

No matter how secure the database actually is, if a person can simply steal the hard drive on which
the database is stored, then that person can access the database at leisure. This case is obvious, but

less obvious security failures, such as taking a copy of a backup tape of the database, can be harder
to safeguard against.

e Operating system security

Most DBMS's run on top of an operating system (OS). Examples of OS's include Window 95,
Windows NT, and Unix. The database may be secure from within the DBMS, but if the database can
also be accessed from the OS using simple file handling programs, then a clear weakness in the
security model exists.

e Database system security

Within the DBMS itself, if anyone can access anything then having any other sort of security seems
pointless. The use of user accounts and password protection of user identities is a good starting point
to improve security. User identities is also an aid to accountability. Protection of certain elements of
the database with respect to certain users (or user groups) should always be considered where
potentially confidential data is being stored. It is DBMS security which is the focus of this
discussion.

31/08/2005

Database System Notes V3.2 Page 147 of 181

Granularity of DBMS Security

The unit of data used in specifying security in the database can be, for example;

the entire database

a set of relations

individual relation

a set of tuples in a relation
individual tuple

a set of attributes of all tuples

an attribute of an individual tuple.

DBMS-level Protection

e Data encryption:

Often it is hard to prevent people from copying the database and then hacking into the copy at
another location. It is easier to simply make copying the data a useless activity by encrypting the
data. This means that the data itself is unreadable unless you know a secret code. The encrypted data
in combination with the secret key is needed to use the DBMS.

o Audit Trails:

If someone does penetrate the DBMS, it is useful to find out how they did it and what was accessed
or altered. Audit Trails can be set up selectively to minimise disk usage, identify system weaknesses,
and finger naughty users.

User-level Security for SQL

¢ Each user has certain access rights on certain objects.
o Different users may have different access rights on the same object.

In order to control the granularity of access rights, users can

¢ Have rights of access (authorisations) on a table
e Have rights of access on a view. Using views, access rights can be controlled horizontal and
vertical subsets on a table, and on dynamically generated data from other tables.

The GRANT command

GRANT is used to grant privileges to users

GRANT privileges ON tablename
TO { grantee ... }
[WITH GRANT OPTION]

Possible privileges are:

SELECT - user can retrieve data
UPDATE - user can modify existing data
DELETE - user can remove data
INSERT - user can insert new data

31/08/2005

Database System Notes V3.2 Page 148 of 181

¢ REFERENCES - user can make references to the table

The WITH GRANT OPTION permits the specified user can grant privileges which that user
possesses on that table to other users. This is a good way to permit other users to look after
permissions for certain tables, such as allowing a manager to control access to a table for his or her
subordinates.

grantee need not be a username or a set of usernames. It is permitted to specify PUBLIC, which
means that the privileges are granted to everyone.

GRANT SELECT ON userlist TO PUBLIC;

GRANT and VIEWs

When a view is created is when the security of the view is checked. Thus if there was sufficient
security for the view to execute when it was created, then the view will always work no matter what
additional GRANTSs are made. This can be used to restrict columns and rows from a user.

GRANT select ON employee to jim;

create view empjim as

select empno, surname, forenames from employee;
GRANT select on empjim to jim;

REVOKE select ON employee from jim;

You can also restrict rows of a table to particular users by their username or other feature. In Oracle,
the username of the current user is returned by the function USER. Thus the following creates a
single table, but gives each user of the view the ability to look at only rows where the username
matches their username.

CREATE table checker (
username varchar (200)
,secretinfo varchar (100)

)7

CREATE view userview as
select * from checker
where username = USER

7
select * from userview -- shows rows where the username matches.
;

The Database Administrator

As system controls increase usability of the system decreases. Actually it is perfectly possible to
have an efficient and reliable system which no one can use effectively. This is never the explicit goal
of the DBA, but there is a danger that it is an implicit goal.

The person who looks after the database needs to balance all needs of the users, whether they know
they need it or not. No user wants security, for instance, yet if someone hacks in and deletes all their
work the DBA becomes the target. Perfectly designed security is completely invisible to the valid
user, but is automatic and total for the invalid user.

Security is not the only issue of importance for the DBA. They are also concerned with:

e System performance and tuning
¢ Data backup and recovery

31/08/2005

Database System Notes V3.2 Page 149 of 181

Product and tool selection, installation, and maintainance
System documentation

Support

Education

Fortune Telling / Future Prediction

A good DBA is almost never seen. The fact is that if you have to phone the DBA then the DBA has
failed. The system will be monitored continuously, and problems detected and fixed before they are
noticed by users. Long term issues, such as data growth, diversification, the addition of new projects,
do need to be discussed with the DBA, but the DBA should be able to detect most issues anyway and
handle them transparently from the users and developers.

31/08/2005

Database System Notes V3.2 Page 150 of 181

Chapter 9 - Offline Tutorials

Mostly this site is involved with online tutorials, but a number of paper-based tutorials are also
included in the online book.

SQL Tutorial 1 - Intro material covering activeSQL tutorials 1 and 2.
SQL Tutorial 2 - Material covering activeSQL tutorial 3.

SQL Tutorial 3 - Material covering activeSQL tutorial 4.

SQL Tutorial 4 - Material covering activeSQL tutorial 5.

jobs database ER diagram

dressmaker database ER diagram

musician database ER diagram

Tutorial - ER Diagram Examples 1-2

Tutorial - ER Diagram Examples 3-5

Tutorial - Normalisation

31/08/2005

Database System Notes V3.2 Page 151 of 181

Tutorial 1

Contents

¢ SQL with Oracle

o SPECIAL TABLE

o Predicates
e Comparisons
¢ BETWEEN (Inclusive)
e LIKE

e ISNULL
[]

[]

[]

[]

Set Functions

Ordering rows of a query result
Prevention of duplicate rows
Counting unique rows

SQL with Oracle

SQL (Structured Query Language) is the structured query language used to manipulate relational
databases. The concept of relational database was first proposed by Codd in 1970, and a language to
extract and manipulate the data in it was developed theoretically during the following years. All SQL
statements are instructions to the database. SQL is a non-procedural language, which means that
commands are not executed step by step according to how they were written, but they are retained in
memory, read through and executed in the most effective way. In relational database terminology,
SQL provides 'automatic navigation' to the data in the database.

In these notes, you see an indication of two possible interfaces to SQL, namely sqlplus and

activeSQL. Sqlplus is the standard Oracle interface while activeSQL is an experimental interface
which Napier students have access to. For our tutorials we will all be using activeSQL.

Command Endings

Note that all SQL commands typed into sqlplus MUST end in a ; (semicolon) character. It will not
work without it. The activeSQL interface is more forgiving, but even then if you enter more than 1
command into the interface at a time you MUST separate the commands with a semicolon.

When entering SQL, you can have as many space characters and return characters as you like. They
are completely ignored by Oracle. Sqlplus will, when you hit return, tell you what line you are
currently on. These numbers are not part of the command so do not let them confuse you. In sqlplus,
if you hit return twice (return on a blank line) the current command is cancelled.

In activeSQL, no command is executed until you hit the submit button.

SELECT

SQL command SELECT is used to retrieve information from a table. SELECT informs Oracle which
table(s) to use and which column(s) and row(s) to retrieve.

The asterisk can be used to denote all fields.

31/08/2005

Database System Notes V3.2 Page 152 of 181

To list all fields and all records from the table employee.
SELECT *

FROM employee

’

To display only the fields empno and depno but all records

SELECT empno, depno
FROM employee;

SPECIAL TABLE

There is a special table called CAT, which contains the name and type of all tables in your
namespace. Running

SELECT * from CAT:

produces the name and type of all local tables. This includes the 5 tables used in these tutorials:
employee, empcourse, jobhistory, course, and department.

To find out about a particular table, you can look at the commands which created it, or you can use
the DESCRIBE command. This tells you the attributes of the table in question. In sqlplus, this
description does not include the Foreign Keys (the links to other tables - more of this in tutorial 2)
but in activeSQL Foreign Keys ARE shown. For instance:

DESCRIBE employee;

empno integer primary key

surname varchar (15)

forenames varchar (30)

dob date

address varchar (50)

telno varchar (20)

depno integer references department (depno)

varchar(20) indicates a string which can be up to 20 characters long.

Date indicates that field is an Oracle date.

Integer indicates that that attribute is a number.

Depno integer References department(depno) tells us that depno in employee is a link to the

department table's depno attribute. In this confusing case there are two attributes called depno, one in
employee and one in department. These attributes are different attributes in different tables.

Predicates

Search conditions are made up of predicates. These are then combined together with ANDs, ORs,
and NOTs.

There are seven types of predicate:

e comparison
e BETWEEN predicate

31/08/2005

Database System Notes V3.2 Page 153 of 181

IN predicate

LIKE predicate

ANY or ALL predicate
EXISTS predicate

IS NULL

Comparisons
The comparisons available are

= equal to

= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to

List the fields empno, surname, telno of all employees who have a surname Wright. Notice the quote
marks required for character constants. Note also that anything within the quotes is case sensitive.

SELECT empno, surname, telno
FROM employee
WHERE surname = 'Wright'

List all current salaries in the range £20000 to £30000, listing their empno values.

SELECT empno, enddate, salary
FROM jobhistory

WHERE enddate IS NULL

AND salary >= 20000

AND salary <= 30000

List all the employees working in the company on January 1st 1980 and their position

SELECT empno, position, startdate, enddate

FROM Jjobhistory

WHERE (startdate < '01-JAN-1980' AND enddate > '01-JAN-1980")
OR (startdate < '01-JAN-1980' AND enddate IS NULL)

BETWEEN (Inclusive)

List all the courses which occurred during 1988

SELECT *
FROM course
WHERE cdate BETWEEN '01-JAN-1988' AND '31-DEC-1988'

List all the courses which did not occur in 1988

SELECT *
FROM course
WHERE cdate NOT BETWEEN 'Ol1-JAN-1988' AND '31-DEC -1988'"

31/08/2005

Database System Notes V3.2 Page 154 of 181

LIKE

The LIKE predicate provides the only pattern matching capability in SQL for the character data
types. It takes the following form

columnname [NOT] LIKE pattern-to-match

The pattern match characters are the percent sign (%) to denote 0 or more arbitrary characters, and
the underscore () to denote exactly one arbitrary character.

List the employee numbers and surnames of all employees who have a surname beginning with C.

SELECT empno, surname
FROM employee
WHERE surname LIKE 'C%'

List all course numbers and names for any course to do with accounting.

SELECT courseno, chame
FROM course
WHERE cname LIKE '$ccount%'

List all employees who have r as the second letter of their forename.

SELECT surname, forenames
FROM employee
WHERE forenames LIKE ' r%'

IS NULL

List all employees numbers and their current position

SELECT empno,position
FROM jobhistory
WHERE enddate IS NULL

The remaining predicates will be dealt with at a later stage.

Set Functions

A set function is a function that operates on an entire column of values, not just a single value.

List the total wage bill for the company at the moment.

SELECT SUM(salary)
FROM jobhistory
WHERE enddate IS NULL

This will retrieve the total salary for employees, where the enddate is empty or NULL.
The following are the set functions supported

Table 1: Set Functions

31/08/2005

Database System Notes V3.2 Page 155 of 181

Name		Description
COUNT		Count of occurrences
SUM		Summation
IJAVG		Average (Sum/Count)
IMAX	[Maximum value	
MIN		Minimum value

Find the number of employees working currently.

SELECT COUNT (*)
FROM Jjobhistory
WHERE enddate IS NULL

The COUNT(*) function is used to count rows in a table, and is the exception to the following rule.
NULL values are ignored by the set functions.

Count how many jobs that employee number 25 has had previously.

SELECT COUNT (enddate)
FROM jobhistory
WHERE empno = 25

Count how many jobs employee number 25 has had, including current job.

SELECT COUNT (startdate)
FROM jobhistory
WHERE empno = 25

Calculate the average salary for all employees.

SELECT AVG (salary)
FROM Jjobhistory
WHERE enddate IS NULL

Note that a 'column label' might be usefully added. This will be output in uppercase format unless
enclosed in double quotes as follows :--

Find out the greatest salary.

SELECT MAX (salary) "Highest Salary"
FROM jobhistory
WHERE enddate IS NULL

Ordering rows of a query result

The order in which the selected rows are displayed is changed by adding an ORDER BY clause to
the end of your SELECT command. The ordering is done numerically or alphabetically and can be
ascending or descending.

List all the employee numbers and salaries, ordered by their salary.

SELECT empno, salary

31/08/2005

Database System Notes V3.2 Page 156 of 181

FROM jobhistory
WHERE enddate IS NULL
ORDER BY salary

To order by descending order you need to add DESC in the ORDER BY command

SELECT empno, salary
FROM jobhistory

WHERE enddate IS NULL
ORDER BY salary DESC

Prevention of duplicate rows

If you print all the jobs in the jobhistory table you will get duplicate rows.

SELECT position
FROM jobhistory

To print out only one for each different job you need to add DISTINCT in the SELECT clause.

SELECT DISTINCT position
FROM jobhistory

Counting unique rows

Often you would like to count how many different rows exist in the result of a query. Doing:

SELECT DISTINCT count (position)
FROM jobhistory

result in an answer which is no different from the same query without the DISTINCT. This is caused
by the fact that count() is done before DISTINCT, and therefore in this case DISTINCT does
nothing. What is actually needed is a way of forcing DISTINCT to be done before the count. This
can be achieved by doing:

SELECT count (DISTINCT position)
FROM Jjobhistory

31/08/2005

Database System Notes V3.2 Page 157 of 181

Tutorial S2

Contents

Joining tables
Aliases or correlation names.

Equi-joins and non-equi joins
GROUP BY

HAVING

Execution of queries

Joining Tables to Themselves - Self joins

Joining tables

Often the information required is contained in more than one table. You can specify more than one
table in the FROM clause. For example the use of the two tables employee and jobhistory in the
FROM clause will create a larger table with each row in employee combined with each row in
jobhistory. Each of these new rows will have all the columns from the employee table and the
jobhistory table. If there are 3 rows in employee and 5 rows in jobhistory this will create a new table
of 3 times 5 (i.e. 15) rows. This is known as a Cartesian product.

A Cartesian product will contain many rows of no practical interest, such as rows containing the
employee and jobhistory details for two different employees. It is therefore necessary to have some
restriction on the join. Here a likely requirement is that the empno field in the employee table
matches the empno of the jobhistory table. Each row in the resulting table will then contain
employee and jobhistory data for only one employee.

List the employees number, surname, and current job title.

SELECT employee.empno, surname, position
FROM employee, jobhistory

WHERE enddate IS NULL

AND employee.empno = jobhistory.empno

A more modern syntax of this would be.

SELECT employee.empno, surname, position
FROM employee JOIN jobhistory ON (employee.empno = Jjobhistory.empno)
WHERE enddate IS NULL

Notice that the fields which are not unique must be explicitly referred to by use of the table name
and a fullstop followed by the fieldname. For instance empno occurs in both the employee table and
the jobhistory table and so it must be explicitly referred to. This also means that it must be explicitly
referred to in the SELECT clause even though the values are the same for employee.empno and
jobhistory.empno.

You can use more than two tables in the FROM clause. There is no theoretical limit, however there

will be some limit placed on you by the system itself. If you have N tables in the FROM clause then
you will normally need (N — 1) join conditions.

31/08/2005

Database System Notes V3.2 Page 158 of 181

Aliases or correlation names.

Although table prefixes prevent ambiguity in a query, they can be tedious to enter. You can define
temporary labels in the FROM clause and use them elsewhere in the query. Such temporary labels
are sometimes known as temporary table aliases.

List the employee number, surname and department of each employee.

SELECT e.empno, surname, dname
FROM employee e JOIN department d ON (e.depno = d.depno)

Notice that the table employee is given an alias e, and department an alias d. This can then be used
during the query. It is also possible to use the actual name. Notice also that the join is on the two
tables employee and department.

Equi-joins and non-equi joins
When you join the table department to the table employee, the join condition specifies the

relationship between them. Such joins are known as equi-joins because the comparison operator is
the equals operator. Any join that does not use this operator is known as a non-equi join.

GROUP BY

Conceptually GROUP BY rearranges the table designated in the FROM clause into partitions or
groups, such that within any one group all rows have the same value for the GROUP BY field(s).

List the departments and their total current salary bill

SELECT depno, sum(salary) "Salary"

FROM employee JOIN jobhistory ON (employee.empno=jobhistory.empno)
WHERE enddate IS NULL

GROUP BY depno

In the above example, table employee is grouped so that one group contains all the rows for
department 1, another contains all the rows for department 2, and so on.

The sum(salary) "Salary" renames the column Salary.

Each expression in the SELECT clause must be single-valued per group (i.e. it can be one of the
GROUP BY fields or an arithmetic expression involving such a field), or a constant, or a function
such as SUM that operates on all values of a given field within a group and reduces those values to a

single value.

The purpose of such grouping is generally to allow some set function to be computed for each group.

HAVING

The GROUP BY clause may be qualified by a HAVING clause. The HAVING clause restricts the
groups which are selected in the output. The groups that do not meet the search condition are
eliminated.

Each expression in the HAVING clause must also be single-valued per group.

31/08/2005

Database System Notes V3.2 Page 159 of 181

List the number of people who have been on each course numbered 1 to 6

SELECT courseno, COUNT (*)

FROM empcourse

GROUP BY courseno

HAVING courseno BETWEEN 1 AND 6

Execution of queries

From a conceptual standpoint, the subselect is evaluated in the following manner: First, the Cartesian
product of all tables identified in the FROM clause is formed. From that product, rows not satisfying
the search condition specified in the WHERE clause are eliminated. Next, the remaining rows are
grouped in accordance with the specifications of the GROUP BY clause. Groups not satisfying the
search condition in the HAVING clause are then eliminated. Then, the expressions specified in the
SELECT clause are evaluated. Finally, the ORDER BY clause, if present, is evaluated and, if the key
word DISTINCT has been specified, any duplicate rows are eliminated from the result table.

Joining Tables to Themselves - Self joins

Sometimes a table must be joined to itself. In this case, any references to fieldnames become
ambiguous and aliases must be used to uniquely identify required fields.

List the surname and forename of all the employees who work in the same department as employee
number 16. In this case two “versions” of the employee table must be used, one for employees other
than 16, and one for employee 16 :-

SELECT x.surname, x.forenames
FROM employee x, employee y
WHERE x.depno = y.depno

AND y.empno = 16

AND x.empno != 16

You need to have one version of the table employee so that you can find the department number of
employee 16. In the above example this table is called y. You then look through another version of
the table employee, here calledx, to find people who are in the same department. Finally, you do not
want employee number 16 to be displayed, so you should eliminate this case by adding x.empno !=
16.

Notice you have to make sure that you do not get the different tables confused and display y.surname
and y.forenames since this will just display the surname and forename of employee 16 as many times
as there are employees in their department. If there is any risk of confusion you are advised to avoid

nen o nen nn

cryptic labels and use meaningful labels , for example replace "x", "y" with "others", "emp16"; :-

SELECT others.surname, others.forenames
FROM employee others, employee empl6
WHERE others.depno = empl6.depno

AND empl6.empno = 16

AND others.empno != 16

31/08/2005

Database System Notes V3.2 Page 160 of 181

Tutorial S3

Contents

¢ Subqueries
ANY and ALL

IN and NOT IN
EXISTS and NOT EXISTS
UNION of subqueries

Subqueries

Nesting of queries is accomplished in SQL by means of a search condition feature known as the
subquery. A subquery is a subselect used in a predicate of a search condition. Multiple levels of
nesting are permitted. It is often possible to frame a query either by using subqueries or by using
joins between the tables.

Some students find subqueries easier to understand than using joins. So if you had difficulty with
joins in tutorial 2 you might find this tutorial a lot easier.

The following example was given in tutorial 2 using a self join :-

List the surname and forename of all the employees who work in the same department as employee
number 16.

SELECT x.surname, x.forenames
FROM employee x, employee y
WHERE x.depno = y.depno

AND y.empno = 16

AND x.empno != 16

This could be implemented using a subquery as :-

SELECT surname, forenames
FROM employee
WHERE depno =
(SELECT depno
FROM employee
WHERE empno = 16)
AND empno != 16

The subquery in the brackets is evaluated first. The value in SELECT clause is then placed in the
outer query, which is then evaluated. So that if the subquery established that employee 16 worked in
department number 5, the following outer query would then be evaluated.

SELECT surname, forenames
FROM employee

WHERE depno = 5

AND empno != 16

The SELECT clause of a SUBQUERY can return ONLY ONE field name which may be associated
with zero, one or many values.

31/08/2005

Database System Notes V3.2 Page 161 of 181

Notice also in the previous example that although there are two different occurrences of the table
employee, they need not be given aliases. This is because the definition of employee in each FROM
clause above, is only referred to locally within the predicates of the corresponding SELECT clause.

Aliases may be optionally used as shorthand or to clarify statements. However, at times, it is
essential to use an alias, for example to reference a table defined in an outer query. In the following
example, if there was no explicit reference to x.depno in the subquery, then it would assumed to be
implicitly qualified by y.depno.

Unqualified columns in a subquery are looked up in the tables of that subquery, then in the table of
the next enclosing query and so on.

The overall query is evaluated by letting x take each of its permitted values in turn (i.e. letting it
range over the employee table), and for each such value of x, evaluating the subquery.

This type of query must be done by using subqueries and cannot be done just using joins.

List the employee's number, name and department for any employee with a current salary greater
than the average current salary for their department.

SELECT x.empno, xX.surname, x.depno
FROM employee x, jobhistory
WHERE enddate IS NULL
AND x.empno = jobhistory.empno
AND salary >
(SELECT AVG(salary)
FROM employee y, jobhistory
WHERE y.empno = Jjobhistory.empno
AND enddate IS NULL
AND y.depno = x.depno)

Notice that there need be no correlation names for the jobhistory tables as they are only used locally
and therefore are implicit.

The following examples cover predicates which are used in combination with subqueries. They
specify how values returned by a subquery are to be used in the outer WHERE clause.

ANY and ALL

Any or ALL can be inserted between the comparison operator (=, |=, >, >=, <, <=) and the subquery.

List the employees who earn more than any employee in Department 5 :-.

SELECT employee.empno, surname, salary
FROM employee, jobhistory
WHERE enddate IS NULL
AND employee.empno = jobhistory.empno
AND salary > ANY
(SELECT salary
FROM employee, Jjobhistory
WHERE enddate IS NULL
AND depno=5
AND employee.empno = jobhistory.empno)

The lowest salary in department 5 is £17000, employee 29, the main query then returns employees
who earn more than £17000.

31/08/2005

Database System Notes V3.2 Page 162 of 181

List the employees who earn more than all the employees in Department 5 :-

SELECT employee.empno, surname, salary
FROM employee, jobhistory
WHERE enddate IS NULL
AND employee.empno = jobhistory.empno
AND salary > ALL
(SELECT salary
FROM employee, jobhistory
WHERE enddate IS NULL
AND depno=5
AND employee.empno = jobhistory.empno)

Since the greatest salary in department 5 is £29000 , employee number 28, the main query returns all
employees who earn more than £29000.

IN and NOT IN

Subqueries can return a list of values. IN and NOT IN are used to check if values are in this list.

List all the employee numbers of anyone who has been on a course in 1988.

SELECT empno
FROM empcourse
WHERE courseno IN
(SELECT courseno
FROM course
WHERE cdate BETWEEN '01-JAN-1988' AND '31-DEC-1988")

Notice the subquery must contain a reference to exactly one column in its SELECT clause.

EXISTS and NOT EXISTS

EXISTS evaluates to true if and only if the set represented by the subquery is nonempty.

List all the employees who have at least one other employee currently doing the same job as them.

SELECT x.empno, surname, x.position
FROM jobhistory x, employee

WHERE x.empno = employee.empno
AND x.enddate IS NULL
AND EXISTS

(SELECT ~*

FROM jobhistory y

WHERE y.enddate IS NULL

AND y.position = x.position
AND x.empno != y.empno)

UNION of subqueries

A query may be composed of two or more queries with the operator UNION.

UNION returns all the distinct rows returned by either of the queries it applies to. This means it
removes all duplicates.

UNION ALL returns all rows returned by either of the queries it applies to. Duplicates allowed.

31/08/2005

Database System Notes V3.2

List all employees who are in department 4 or 5.

SELECT forenames, surname
FROM employee

WHERE depno = 4

UNION

SELECT forename, surname
FROM employee

WHERE depno = 5

This UNION could have been done more concisely by using a IN clause.

SELECT forenames, surname
FROM employee
WHERE depno IN (4, 5)

However, this is not as easy if the two parts of the query are from different tables.

List all employees who were born before 1960 or who earn more than £25000.

SELECT forenames, surname

FROM employee

WHERE dob < ‘01-JAN-1960"

UNION

SELECT forenames, surname

FROM employee, jobhistory

WHERE employee.empno = jobhistory.empno
AND enddate IS NULL

AND salary > 25000

Any employee who meets both conditions is listed only once.

Page 163 of 181

31/08/2005

Database System Notes V3.2 Page 164 of 181

Tutorial 4

Contents

o VIEWS and Miscellany

VIEWS

Removal of a VIEW

differences between sqglplus and activeSQL
Outer Join

Arithmetic operation on dates etc.

NVL function

O O O 0O O O©O

VIEWS and Miscellany

VIEWS

CREATE VIEW viewname AS defines a virtual table. A query appears after the AS statement, and
the result of executing this query appears as a new table called viewname. However, the data
resulting from executing the AS statement is not stored directly in the database. Only the view
definition is stored.

Each time a view table is used in an SQL statement, the statement operates on the view's base tables
to generate the required view content. Views are therefore dynamic and their contents change
automatically as base tables change.

Views can be usefully employed for intermediate tables, and may replace subenquires in order to
simplify complex queries

All SELECTs on views are fully supported. Updates, inserts and deletes on views are, however,
subject to several rules. Although in this tutorial we make no attempt to update or modify tables, it is
important to realise what these modification rules are.

View modifications are not allowed if

e View was created from more than one table.
e View was created from a non-updatable view.
e Any column in the view is derived or is an aggregate function.

Furthermore, inserts are not allowed if
e Any column in the base table was declared as NOT NULL is not present in the view.

Create a view that contains each employees' surname, salary and department name.

CREATE VIEW empdepsal (ename, sal, dept)

AS

SELECT e.surname, Jj.salary, d.dname

FROM employee e, jobhistory j, department d
WHERE e.empno = Jj.empno

AND e.depno = d.depno

AND enddate IS NULL

31/08/2005

Database System Notes V3.2 Page 165 of 181

Removal of a VIEW

This is just the same syntax as dropping a TABLE.

DROP VIEW empdepsal

differences between sqlplus and activeSQL

There is one important difference between sqlplus and activeSQL. In sqlplus, you have your OWN
oracle account, and you do not share this with anyone. When you create a view in Oracle is stays
around until you explicitly delete it. Thus you can reuse a view for more than one purpose without
having to redefine it.

In activeSQL, you share your namespace with all the other activeSQL users. ActiveSQL tries to
make sure that this never causes interference involving the other users. However, one thing it does
do is insist that your views are deleted immediately after they are used. If you run a query involving
a view, activeSQL will delete that view automatically on your behalf before displaying the results of
your query. Thus to use a view in two questions, you must create the view in EACH question. You
will not lose marks for reusing a view in two or more questions by copying the view definition into
the answer to all the questions. Try to come up with viewname which are likely to be different to
your colleagues names - identical name for views are unlikely to cause any problems but different
name will definitely NOT cause problems.

No matter what interface you use, it is good practice to delete a view once you are finished with it.
Forgetting to delete the view yourself will cost you marks.

Outer Join

One problem which comes up frequently in advanced SQL is losing data in a query where some of
the relationships involve NULL. For instance, lets say we want to list ALL empnos in the employee
table against how many courses they have been on.

Initially you might simply say:

select employee.empno, count (courseno)
from employee, empcourse
where employee.empno = empcourse.empno

group by employee.empno;

It looks very reasonable, but running the query produces:

[EMPNO||COUNT(COURSENO)|
I 2 |
2 2 |
7 12 |
8 2 |
4 2 |
s |2 |
o I |
L | |
2 o |

31/08/2005

Database System Notes V3.2 Page 166 of 181

So what happened to all the other empno entries? For instance there is an employee 3, but it does not
appear in the table. As employee 3 has not been on any courses, empcourse.empno does not have the
value 3, and thus that row of employee is ignored. Whats the solution? There are two possibilities,
one using UNION and one (much nicer) solution using OUTER JOIN.

With UNION, we can join together two separate queries and make it appear like a single result table.
We can use this to join two queries together, one which is the query above with all the employees
with courses, and one query which is all the employees who never did courses. This second query
must return the empno attribute, and also a count attribute with a value of 0 (these employees have
done 0 courses). Actually, this is quite easy:

select employee.empno, 0
from employee
where employee.empno not in

(select empno from empcourse)
group by employee.empno;

To join them together list both queries one after another with the word UNION between them. Thus:

select employee.empno, count (courseno)
from employee, empcourse

where employee.empno = empcourse.empno
group by employee.empno

UNION

select employee.empno, 0

from employee

where employee.empno not in

(select empno from empcourse)
group by employee.empno;

Magic!
Although this works well, it is rather complex and long. Another way is to use OUTER JOIN. This is
the same as a normal join, except we warn Oracle that, if there is no value at one side of the join, just

pretend there is one. Where we want to allow values to be missing the Oracle syntax as (+) after the
attribute which can have no value.

In our case the problem is with

employee.empno = empcourse.empno

Here, empcourse.empno does not have all the values of employee.empno, and to make the query
work we tell oracle to keep going even if there is no equivalent empcourse.empno value. Thus we
change this line to:

employee.empno = empcourse.empno (+)

The whole query changes to :

select employee.empno, count (courseno)
from employee, empcourse
where employee.empno = empcourse.empno (+)

group by employee.empno;

You could have also wrote:

where empcourse.empno (+) = employee.empno

31/08/2005

Database System Notes V3.2 Page 167 of 181

There are complex rules as to how many (+) symbols you can put to the left of an = sign, but in
general you can put as many as you like on the right hand side. Trying to utilise more than one (+) in
a single SQL statement is strictly for experts only. It is easy to get into a position where Oracle
refuses to execute such queries!

As you can see, the is only a few characters longer than the original broken query, and thus is much
less complex than the UNION solution. The problem people find with OUTER JOIN is knowing
where to put the (+). If you are going to use OUTER JOIN do not just randomly put (+) in your
query and then move it until it works. Try to have a logical approach to its placement, or you will be

sorry!

Arithmetic operation on dates etc.

Oracle allows you to do simple arithmetic operations on dates.
SYSDATE returns the current date and time.

You can add and subtract number constants as well as other dates from dates. Oracle interprets
number constants as numbers of days. For example, SYSDATE -7 is one week ago.

ADD_ MONTHS(d, n) returns the date plus n months.
LAST DAY(d) returns the last day of the month that contains the date d.

MONTHS BETWEEN(d1,d2) returns the number of months between dates d1 and d2. If d1 is later
than d2, the result is positive, if earlier it is negative. If d1 and d2 are the same days of the month or
both the last days of the month the result is an integer otherwise there is also a fractional part.

To calculate the number of days left in a month.

SELECT SYSDATE, LAST DAY (SYSDATE) "Last", LAST DAY (SYSDATE) - SYSDATE "Days left"
FROM DUAL;

Dual is a table automatically created by Oracle along with the data dictionary. It is accessible to all
users. It has one column DUMMY and one row with the value X. Selecting from the dual table is
useful for computing a constant expression with the SELECT command because dual has only one
row the constant is returned only once.

How many days has each employee been in his or her current job?

SELECT empno, SYSDATE - startdate "No of days"
FROM jobhistory
WHERE enddate IS NULL;

This works out the number of days between the startdate and today's date. The heading of the
column is No of days. However there is also a fractional part which is the fraction of the day.

ROUND(A) returns d rounded to the nearest day.

How many days has each employee been in his or her current job?

SELECT empno, ROUND (SYSDATE - startdate) "No of days"
FROM jobhistory
WHERE enddate IS NULL;

31/08/2005

Database System Notes V3.2 Page 168 of 181

Rounds the result to the nearest day.

List how many months each employee has been in his or her current job?

SELECT empno, MONTHS BETWEEN (SYSDATE , startdate) "No of months"
FROM Jjobhistory
WHERE enddate IS NULL;

NVL function

NVL returns the normal set function result unless that result is NULL, when it returns the second
argument in the NVL function.

To list employees' positions with end dates if not null or else today's date :-

SELECT empno, NVL(enddate, SYSDATE)
FROM jobhistory

31/08/2005

Database System Notes V3.2

ER Diagram for JOBS

There are a number of tutorial questions on the JOBS database. This can be described with the

following ER diagram:
Employee ~np Empcourse
empno
empno depnd
empno depno
Jobhistory Department

Page 169 of 181

COUTrseno

COUTrs€eno

Course

Figure : ER diagram for the JOBS database

31/08/2005

Database System Notes V3.2 Page 170 of 181

ER Diagram for Dressmaker

Contents

IMCUST
DRESS_ORDER
ORDER_LINE
QUANTITIES
GARMENT
MATERIAL
CONSTRUCTION
DRESSMAKER

There are a number of tutorial questions on the DRESSMAKER database. This can be described
with the following ER diagram:

jmeust garment
c_no style_no material
style g
material_no
cust oo

guantities

dress_ordec

order_no .
constraction

ol_style,ol_si maker order_refline_ref

order_ref dressmakec

ol_material d_no

order_line

order_ref line_no

Figure: Dressmaker ER Diagram

The dressmaker tables make use of composite primary keys, and therefore has composite foreign
keys. A relationship involving a composite key must include all the attributes involved. For instance,
a query needing ORDER_LINE, CONSTRUCTION, and DRESSMAKER would need something
like:

SELECT *
FROM order line JOIN construction ON (
order line.order ref = construction.order ref
AND order line.line no = construction.line ref
) JOIN dressmaker ON (dressmaker.d no = construction.maker)

JMCUST

This table contains information on the customers who use the dressmaker company, including a
unique id, the customer name and house number, and the customer's post code.

31/08/2005

Database System Notes V3.2 Page 171 of 181

DRESS ORDER

If a customer makes an order, it is recorded here. Each order has an order number, and an associated
customer number. The date of the order is also recorded. Once all the items in the order have been
completed, COMPLETED is set to Y, otherwise it is N. Only uppercase Y or N is used.

ORDER_LINE

Each order that a customer places is made up of 1 or more garments. Each garment of the order is
recorded in this table. It is called ORDER_LINE as it represents a single element or line of an order
sheet. Each garment in an order is given a unique number (line no). ORDER _REEF is the order
number. Garments to be build need a style (trousers, shirts, etc), a size (10,12,etc) and a material
(silk, cotton, etc).

QUANTITIES

QUANTITIES explains how much material is needed to build a particular garment. For instance
style 4 in size 16 requires 1.5 linear feet of material. Material is sold in a roll, and so someone needs
to measure 1.5 feet off the roll and give that to a dressmaker to make the garment.

GARMENT

Each garment has a style number, a description (e.g. trousers), a labour cost and some dressmaker
notes (called notions). The labour cost indicates how much money has to be payed to a dressmaker
for the time required to make this garment.

MATERIAL

The material to make a garment has a material number, and a fabric name (e.g. cotton). Each fabric
may be available in different colours and fabric patterns (like stripes). The COST is the price of the
material in linear feet. So one foot off the role of material costs so many pounds.

CONSTRUCTION

This allocates each item in an order to a particular dressmaker. It includes a start date (when it was
allocated) and has a finish date of NULL when it is not finished, or the date when it was finished.

DRESSMAKER

Each dressmaker who works for the company is recorded here. Each dressmaker has a name and
unique id, plus a house number and a post code. The dressmakers are all freelance, and thus get paid
only on completion of a garment.

31/08/2005

Database System Notes V3.2 Page 172 of 181

ER Diagram for Musician

There are a number of tutorial questions on the MUSICIAN database. This can be described with the
following ER diagram:

musician

rf_is born|in lvinglin composer

performer born_in living—in
- comy_ne
perf_neo place_ne place_ne
place_ne capr_ne
Q@
cmpn_n
plays_in In
band id cencerd_in e no
Contact bemd
concert_ne no

band_contoct performed_in
performed_in

Organiser

Conducted By conducted_by

Figure : ER Diagram for the MUSICIANS database

31/08/2005

Database System Notes V3.2 Page 173 of 181

Tutorial - ER Diagram Examples 1-2

Contents

e Example 1
o Example 2

Example 1

A publishing company produces scientific books on various subjects. The books are written by
authors who specialize in one particular subject. The company employs editors who, not necessarily
being specialists in a particular area, each take sole responsibility for editing one or more
publications. A publication covers essentially one of the specialist subjects and is normally written
by a single author. When writing a particular book, each author works with on editor, but may
submit another work for publication to be supervised by other editors. To improve their
competitiveness, the company tries to employ a variety of authors, more than one author being a
specialist in a particular subject.

Example 2

A General Hospital consists of a number of specialized wards (such as Maternity, Paediatry,
Oncology, etc). Each ward hosts a number of patients, who were admitted on the recommendation of
their own GP and confirmed by a consultant employed by the Hospital. On admission, the personal
details of every patient are recorded. A separate register is to be held to store the information of the
tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for
each patient. Each patient is assigned to one leading consultant but may be examined by another
doctor, if required. Doctors are specialists in some branch of medicine and may be leading
consultants for a number of patients, not necessarily from the same ward.

31/08/2005

Database System Notes V3.2 Page 174 of 181

Tutorial - ER Diagram Examples 3-5

Contents

e Example 3
o Example 4

¢ Example 5

Example 3

A database is to be designed for a Car Rental Co. (CRC). The information required includes a
description of cars, subcontractors (i.e. garages), company expenditures, company revenues and
customers. Cars are to be described by such data as: make, model, year of production, engine size,
fuel type, number of passengers, registration number, purchase price, purchase date, rent price and
insurance details. It is the company policy not to keep any car for a period exceeding one year. All
major repairs and maintenance are done by subcontractors (i.e. franchised garages), with whom CRC
has long-term agreements. Therefore the data about garages to be kept in the database includes
garage names, addressees, range of services and the like. Some garages require payments
immediately after a repair has been made; with others CRC has made arrangements for credit
facilities. Company expenditures are to be registered for all outgoings connected with purchases,
repairs, maintenance, insurance etc. Similarly the cash inflow coming from all sources - car hire, car
sales, insurance claims - must be kept of file. CRC maintains a reasonably stable client base. For this
privileged category of customers special credit card facilities are provided. These customers may
also book in advance a particular car. These reservations can be made for any period of time up to
one month. Casual customers must pay a deposit for an estimated time of rental, unless they wish to
pay by credit card. All major credit cards care accepted. Personal details (such as name, address,
telephone number, driving licence, number) about each customer are kept in the database.

Example 4

A database is to be designed for a college to monitor students' progress throughout their course of
study. The students are reading for a degree (such as BA, BA(Hons) MSc, etc) within the framework
of the modular system. The college provides a number of module, each being characterised by its
code , title, credit value, module leader, teaching staff and the department they come from. A module
is co-ordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer
may teach (and be a module leader for) more than one module. Students are free to choose any
module they wish but the following rules must be observed: some modules require pre-requisites
modules and some degree programmes have compulsory modules. The database is also to contain
some information about students including their numbers, names, addresses, degrees they read for,
and their past performance (i.e. modules taken and examination results).

Example 5

A relational database is to be designed for a medium sized Company dealing with industrial
applications of computers. The Company delivers various products to its customers ranging from a
single application program through to complete installation of hardware with customized software.
The Company employs various experts, consultants and supporting staff. All personnel are employed
on long-term basis, i.e. there are no short-term or temporary staff. Although the Company is
somehow structured for administrative purposes (that is, it is divided into departments headed by

31/08/2005

Database System Notes V3.2 Page 175 of 181

department managers) all projects are carried out in an inter-disciplinary way. For each project a
project team is selected, grouping employees from different departments, and a Project Manager
(also an employee of the Company) is appointed who is entirely and exclusively responsible for the
control of the project, quite independently of the Company's hierarchy. The following is a brief
statement of some facts and policies adopted by the Company.

31/08/2005

Database System Notes V3.2 Page 176 of 181

Normalisation Tutorial

1. A college keeps details about a student and the various modules the student studied. These
details comprise
o regno - registration number
n - student name
a - student address
tno - tutor number
tna - tutor name
dc - diploma code
dn - diploma name
mc - module code
mn - module name
o res - module exam result
where

O 0O 0O 0 O O O O

details (regno,n,a, tno,tna,dc,dn, (mc,mn,res))
dc -> dn
tno -> tna
mc,mn —-> res
n -> a
mc —-> mn

Reduce the relation DETAILS to third normal form.

2. Classify the following relations as either UNNORMALISED, INF, 2NF or 3NF. If the relation
is not in 3NF, normalise the relation to 3NF.
1. EMPLOYEE (empno, empname, jobcode)
empno -> empname
empno -> Jjobcode

2. EMPLOYEE (empno, empname, (jobcode, years))
empno -> empname
empno, jobcode -> years

3. EMPLOYEE (empno, empname, jobcode, jobdesc)
empno -> empname, jobcode
jobcode -> jobdesc

4, EMPLOYEE (empno, empname, project, hoursworked)
empno -> empname
empno, project -> hoursworked

31/08/2005

Database System Notes V3.2

3.

4,

5.

Page 177 of 181

Identify any repeating groups and functional dependences in the PATIENT relation. Show all
the intermediate steps to derive the third normal form for PATIENT.

PATIENT (patno, patname, gpno, gpname, appdate, consultant, conaddr, sample)

|patno ||patname||gpn0|| gpname || appdate ||consultant|| conaddr ||sample|

|3/9/2004 ||Farnes ||Acadia Rd”blood |
01027 ||Grist ~ [919 [[Robinson{|20/12/2004|[Farnes |[Acadia Rd [none |
|10/10/2004||Edwards ||Beech Ave”urine |
_ |3/9/2004 ||Farnes ||Acadia Rd”none |

08023 |[Daniels ||818 ||Seymour -
3/9/2004 |[Russ |Fir St |lsputum|
[191146|Falken |[717 |[Ibbotson |[4/10/2004 |Russ |Fir st |lblood |
[001239||Burgess [[818 |[Seymour|[5/6/2004 |Russ |First |lsputum|

007249|[Lynch |[717 |[Ibbotson |[9/11/2004 |[Edwards

||Beach Ave”none |

Reduce the following to BCNF, showing all the steps involved.

Supplier (sno, sname, saddress, (partno,
sno -> sname, saddr

sno,partno -> partdesc
sno,partno,custid -> quantity

sname -> sno

custid -> custname, custaddr

partdesc, (custid, custname, custaddr, quan

Suppliers supply many parts to many customers. Each customer deals with only one supplier.
Supplier names are unique. Customer names are not unique.

Normalise the following relation to 3NF showing all the steps involved.

GP (gpno, cpname, gpadd, (patno,patname,patadd,patdob, (apptdate, apptime,diagnosi
gpno -> gpname, gpadd
patno -> patname,patadd, patdob
patno, apptdate -> apptime,diagnosis
diagnosis -> treatment

31/08/2005

Database System Notes V3.2

6. The table below shows an extract from a tour operator's data on travel agent bookings. Derive

the third normal form of the data, showing all the intermediate steps.

Page 178 of 181

holiday quantity airport airport
batchno||agentno| agent name code cost booked code name
IB563 1363110 1 |ILuton |
1 76 Bairns travel (B248 124820 112 |[Edinburgh |
IB428 1322][18 11 |Glasgow |
IB563 1363 1|15 IR |ILuton |
Active €930 5682 14 [Newcastle |
2 142 ,
Holidays ||A270 l972][1 |14 [Newcastle |
[B728 [1248][5 12 |[Edinburgh |
. €930 ll568][11 I |ILuton |
3 76 Bairns travel
|A430 1279][15 11 |Glasgow |

7. A software consulting firm wishes to keep the following data for an employee and costing
database:

O

O O O 0O 0O 0O O O O O O O O O

O

employee number
employee name
employee address
salary

current job code

job history (job promotion code + year)
office location
telephone number
project number

project name

task number

task name

project budget

task expendature to date
department number
department name

There are none, one or mor ejob promotion code/year entries per employee. The office
location uniquely depends on the telephone number, and there may be more than one
employee using the same telephone and more than one telephone in the one office. Tasks are
numbered uniquely only within each project. An employee may be concurrently assigned to
more than one project and task, but belongs to one department. Reduce this data to third
normal form.

31/08/2005

Database System Notes V3.2 Page 179 of 181

Chapter 10 - Appendix

This is a collection of some useful reference sections

e changelog - Changes to the document
e Teaching Plan - A possible teaching plan

31/08/2005

Database System Notes V3.2 Page 180 of 181

Changes

Contents

Changes in V3.2
Changes in V3.1
Changes in V3.0

This is the changelog for this document

Changes in V3.2

General tidy and fixed broken characters in Relational Algebra section.

Changes in V3.1

Fixes to typos and section nesting.
Image figures are now handled in a more XHTML way.

Changes in V3.0

Order of SQL and Data analysis sections switched around

Embedded SQL rewritten as Application Links with considerable changes
Introduction changed to have an intro to "what is a table"

The Unit groupings have been removed

SQL chapters have been completely rewritten and expanded

Removed: Data Dictionary (some metadata in new section)

Removed: DBA (some DBA in new section)

New: DBMS Implementation. Uses some rewritten notes from Storage Structures
New: Metadata. Includes material rewritten from security, plus is expanded to discuss
metadata issues and some aspects of the DBA.

Changes: Normalisation loses 4NF and 5NF, but gains a simple in-class example

¢ Exam walkthrough and exam advice removed. This is best done by picking up a past paper

and working through that, or using the online tests. Do not use the old slides related to the
exam walkthrough (which contained things like assertion/reason questions), as they are badly
dated and misleading.

The notes are not now available as a word document. All the notes are kept in html. I will
endevour to produce a good quality printable output of the notes as a pdf, but this technology
is limited at the moment.

31/08/2005

Database System Notes V3.2 Page 181 of 181

Plan
C022001 - Teaching Plan

This is a mock teaching plan for this module. The teaching plan which you actually follow may be
different from this.

[Week No|| Lecture A |[MiniA| Lecture B |MiniB| Tutorial |
|01 ||Intr0ducti0n | |SQL 1 | |L0gging on/ SQL1|
02 |IER 1 | ISQL 2 | ISQL2 |
03 |IER 2 | ISQL 3 | ISQL3 |
04 |IER 3 | ISQL 4 IER1-2 |[SQL4 |
05 IER 4 | INorm1 | [ER Diagram 1 +2 |
|06 ||Trans | |N0rm2 | |C/Work |
07 |RelAll | [Concur | [C/Work |
08 |RelAL2 | IRecovery | lC/Work |
|O9 ||Reading Week ||N0t Supervised |
10 |IDB Security | |App Links |[ER3-5 |[Normalisation |
1 1		Exam Preperation		DBMS Implement		Spare
12		Discuss SOL Assess		Revision		N0t—Used
13		Revision Week		N0t Supervised		
14		Exam Week 1				
15		Exam Week 2				

31/08/2005

