
Transactions

Chapter 6.1
V3.1
Copyright @ Napier University
Dr Gordon Russell

Concurrency using Transactions

The goal in a ‘concurrent’ DBMS is to allow multiple users to
access the database simultaneously without interfering with
each other.

A problem with multiple users using the DBMS is that it may be
possible for two users to try and change data in the database
simultaneously. If this type of action is not carefully controlled,
inconsistencies are possible.

To control data access, we first need a concept to allow us to
encapsulate database accesses. Such encapsulation is called a
‘Transaction’.

Transactions

• Transaction (ACID)
– unit of logical work and recovery

• A - atomicity (for integrity)
• C - consistency preservation
• I - isolation
• D - durability

• Available in SQL
• Some applications require nested or long transactions

Transactions cont...

After work is performed in a transaction, two outcomes are
possible:

Commit - Any changes made during the transaction by this
transaction are committed to the database.
Abort - All the changes made during the transaction by this
transaction are not made to the database. The result of this
is as if the transaction was never started.

Transaction Schedules

A transaction schedule is a tabular representation of how a set
of transactions were executed over time. This is useful when
examining problem scenarios. Within the diagrams various
nomenclatures are used:

READ(a) - This is a read action on an attribute or data item
called ‘a’.
WRITE(x,a) - This is a write action on an attribute or data
item called ‘a’, where the value ‘x’ is written into ‘a’.
tn (e.g. t1,t2,t10) - This indicates the time at which
something occurred. The units are not important, but tn
always occurs before tn+1.

Schedules cont...

Consider transaction A, which loads in a bank account balance
X (initially 20) and adds 10 pounds to it. Such a schedule would
look like this:

WRITE(TOTAL,X)t3

TOTAL:=TOTAL+10t2

TOTAL:=READ(X)t1

Transaction ATime

Schedules cont...

Now consider that, at the same time as trans A runs, trans B
runs. Transaction B gives all accounts a 10% increase. Will X
be 32 or 33?

Schedules cont...

WRITE(BONUS,X)
BONUS:=BONUS*110%

BONUS:=READ(X)

Transaction B

22
22

20

Value
BALANCE

WRITE(TOTAL,X)
TOTAL:=TOTAL+10
TOTAL:=READ(X)

Transaction A

30
30
20

Value
TOTAL

t5

t3
t4

t6

t2
t1

Time

Woops… X is 22! Depending on the interleaving, X can also be 32, 33,
or 30. Lets classify erroneous scenarios.

Lost Update scenario

WRITE(X,R)t3
WRITE(Y,R)t4

Y = READ(R)

Transaction B
X = READ(R)
Transaction A

t2
t1
Time

Transaction A’s update is lost at t4, because Transaction B overwrites
it. B missed A’s update at t4 as it got the value of R at t2.

Uncommitted Dependency

ABORTt3

WRITE(X,R)
Transaction B

Y = READ(R)

Transaction A

t2
t1
Time

Transaction A is allowed to READ (or WRITE) item R which has been
updated by another transaction but not committed (and in this case
ABORTed).

Inconsistency Scenario

SUM should have been 120
SUM+=READ(Z)

SUM+=READ(Y)
SUM:=READ(X)
Action

110205050t8
COMMIT205050t7
WRITE(ACC2+10,X)205050t6
ACC2 = READ(X)205040t5
WRITE(ACC1-10,Z)205040t4
ACC1 = READ(Z)305040t3

90305040t2
40305040t1
SUM

Transaction BTransaction AZYXTime

Serializability

• A ‘schedule’ is the actual execution sequence of
two or more concurrent transactions.

• A schedule of two transactions T1 and T2 is
‘serializable’ if and only if executing this schedule
has the same effect as either T1;T2 or T2;T1.

Precedence Graph

In order to know that a particular transaction
schedule can be serialized, we can draw a
precedence graph. This is a graph of nodes and
vertices, where the nodes are the transaction names
and the vertices are attribute collisions.

The schedule is said to be serialised if and only if
there are no cycles in the resulting diagram.

Precedence Graph : Method

To draw one;
1. Draw a node for each transaction in the schedule
2. Where transaction T1 writes to an attribute which transaction

T2 has read from, draw a line pointing from T2 to T1.
3. Where transaction T1 writes to an attribute which transaction

T2 has written to, draw a line pointing from T2 to T1.
4. Where transaction T1 reads from an attribute which

transaction T2 has written to, draw a line pointing from T2 to
T1.

Example 1

Consider the following
Schedule:

WRITE(y,B)t6
WRITE(x,B)t5

READ(B)t4
READ(A)t3

READ(B)t2
READ(A)t1

T2T1Time

T1 T2

B

B

Example 2
Consider the following

Schedule:

WRITE(v,C)t6
WRITE(w,B)t7

READ(B)
READ(A)

T2

WRITE(z,C)t8

WRITE(x,A)t5
t4
t3

READ(B)t2
READ(A)t1

T3T1Time

T1

T2

T3

B

A

AC

