
SQL – Logical Operators and
aggregation

Chapter 3.2
V3.0
Copyright @ Napier University
Dr Gordon Russell

Logical Operators

• Combining rules in a single WHERE clause would be useful
• AND and OR allow us to do this
• NOT also allows us to modify rule behaviour

• When these are combined together, problems in rule
ordering can occur.

• This is solved using parentheses.

AND

• AND combines rules together so that they ALL must be true.
• Lets revisit the CAR table:

13000BLUESMARTSC04 BFE

Bob Jones6000GREENFIATK555 GHT

Bob Smith22000BLUEMERCEDESA155 BDE

Jim Smith11000BLUESKODAJ111 BBB

Jim Smith12000REDFORDF611 AAA

OWNERPRICECOLOURMAKEREGNO

SELECT regno from car SELECT regno from car
where colour = ‘BLUE’ WHERE regno LIKE ‘%5’

SC04 BFE

A155 BDE

J111 BBB

REGNO

K555 GHT

A155 BDE

REGNO

SELECT regno from car
WHERE colour = ‘BLUE’ and regno LIKE ‘%5%’
;

A155 BDE

REGNO

Multiple AND rules

• You can have as many rules as you like ANDed together.
• For example:

SELECT regno
FROM car
WHERE colour = ‘BLUE’
AND regno like ‘%5%’
AND owner like ‘Bob %’
;

OR

• OR is like ‘either’. So long as one of the rules is true then the
filter is true.

• Looks for cars which are EITHER red or blue…

SELECT regno,colour from CAR
WHERE colour = ‘RED’ OR colour = ‘BLUE’

BLUESC04 BFE
BLUEA155 BDE
BLUEJ111 BBB
REDF611 AAA
COLOURREGNO

NOT

• NOT inverts the rule it is put in front of:
• WHERE colour = ‘RED’
• This could be inverted as:
– WHERE colour != ‘RED’
– WHERE NOT colour = ‘RED’

• NOT is not really useful in this example, but comes
into its own in more complex rulesets.

Precedence

• Precedence is the order in which the rules are evaluated and
combined together.

• It is NOT in the order they are written.
• Rules are combined together firstly at AND, then OR, and

finally at NOT.
• Consider : Car has a 5 in reg and is either red or blue.

SELECT regno,colour from car
WHERE colour = ‘RED’ -- Line 1
OR colour = ‘BLUE’ -- Line 2
AND regno LIKE ‘%5%’ -- Line 3

Brackets

• Rewrite as:
SELECT regno,colour from car
WHERE (colour = ‘RED’
OR colour = ‘BLUE’)
AND regno LIKE ‘%5%’

• Might be clearer as:
SELECT regno,colour from car
WHERE (colour = ‘RED’ OR colour = ‘BLUE’)
AND regno LIKE ‘%5%’

DISTINCT

• Find all the colours used in cars.

SELECT colour from car;

BLUE
GREEN
BLUE
BLUE
RED
COLOUR

DISTINCT

SELECT DISTINCT colour from car;

GREEN
BLUE
RED
COLOUR

ORDER BY

• It would be nice to be able to order the output using a sort.

• SELECT make from car;

SMART
FIAT
MERCEDES
SKODA
FORD
MAKE

ASCending order

• Sort by alphabetical or numeric order: ASC
• ORDER BY … ASC is the default.

SELECT make from car
ORDER BY make;

SMART
SKODA
MERCEDES
FIAT
FORD
MAKE

DESCending order

• Sort by reverse alphabetical or numeric order: DESC
• ORDER BY … DESC must be selected.

SELECT make from car
ORDER BY make DESC;

FORD
FIAT
MERCEDES
SKODA
SMART
MAKE

Multi Column Sort

• ORDER BY can take multiple columns.

SELECT make,colour FROM car
ORDER BY colour,make;

BLUESMART

REDFORD
GREENFIAT
BLUEMERCEDES

BLUESKODA
COLOURMAKE

IN

• When you have a list of OR, all on the same attribute, then
IN could be a simpler way:

• Rather Than:
SELECT regno,make FROM car
WHERE make = ‘SKODA’ or make = ‘SMART’

• Have
SELECT regno,make FROM car
WHERE make in (‘SKODA’,’SMART’);

Aggregate Functions

• Aggregate functions allow you to write queries to produce
statistics on the data in the database.

• These functions are sometimes also called SET functions.

• These include:
– AVG (calculate the average)
– SUM
– MAX
– MIN
– COUNT

AVERAGE

SELECT price FROM car;

13000
6000
22000
11000
12000
PRICE

SELECT avg(price) FROM car;

12800
AVG(PRICE)

SUM

• Add up all the values in a column

SELECT sum(price) FROM car;

64000
SUM(PRICE)

MAX

• What is the maximum value in a column

SELECT max(price) FROM car;

22000
MIN(PRICE)

MIN

• What is the minimum value in a column

SELECT min(price) FROM car;

22000
MIN(PRICE)

COUNT

• How many rows make up a column

SELECT count(price) FROM car;

5
COUNT(PRICE)

• Count(*) is similar, but also counts when price is NULL.

SELECT count(*) FROM car;

COUNT DISTINCT

• Sometimes you do not want to count how many
rows are in a column, but how many different
values could be found in that column.

• There is a special variant of count which does this:

SELECT count(colour) from car;

SELECT count(DISTINCT colour) from car;

5
COUNT(PRICE)

3
COUNT(PRICE)

GROUP BY

• Aggregation functions so far have only been shown in
queries with only the single aggregation function on the
select line.

• You can combine functions and non-functions on the select
line.

• To do this you need GROUP BY.

• Question: What is the most expensive car for each colour.
• Intuitively the following seems right, but will not execute!

SELECT colour,max(price)
FROM car;

SELECT colour,price
FROM car;

SELECT colour,max(price)
FROM car
GROUP BY colour;

13000BLUE
6000GREEN
22000BLUE
11000BLUE
12000RED
PRICECOLOUR

6000GREEN
22000BLUE
12000RED
PRICECOLOUR

HAVING

• WHILE allows rules for each row.
• HAVING allows rules for each group of a GROUP BY.

• Consider the problem “Who has more than 1 car”.

• We would like to say:
SELECT owner from car where count(owner) > 1

• Aggregate functions are not allowed in WHERE.
• They are allowed in HAVING.

SELECT owner,count(regno)
FROM car
GROUP BY owner
HAVING count(regno) > 1

OR
SELECT owner
FROM car
GROUP BY owner
HAVING count(regno) > 1

count(*) works just as well in this case.

	SQL – Logical Operators and aggregation
	Logical Operators
	AND
	
	
	Multiple AND rules
	OR
	NOT
	Precedence
	Brackets
	DISTINCT
	DISTINCT
	ORDER BY
	ASCending order
	DESCending order
	Multi Column Sort
	IN
	Aggregate Functions
	AVERAGE
	SUM
	MAX
	MIN
	COUNT
	COUNT DISTINCT
	GROUP BY
	
	HAVING
	

