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Logical Operators

• Combining rules in a single WHERE clause would be useful
• AND and OR allow us to do this
• NOT also allows us to modify rule behaviour

• When these are combined together, problems in rule 
ordering can occur.

• This is solved using parentheses.



AND

• AND combines rules together so that they ALL must be true.
• Lets revisit the CAR table:

13000BLUESMARTSC04 BFE

Bob Jones6000GREENFIATK555 GHT

Bob Smith22000BLUEMERCEDESA155 BDE

Jim Smith11000BLUESKODAJ111 BBB

Jim Smith12000REDFORDF611 AAA

OWNERPRICECOLOURMAKEREGNO



SELECT regno from car SELECT regno from car
where colour = ‘BLUE’ WHERE regno LIKE ‘%5’

SC04 BFE

A155 BDE

J111 BBB

REGNO

K555 GHT

A155 BDE

REGNO



SELECT regno from car
WHERE colour = ‘BLUE’ and regno LIKE ‘%5%’
;

A155 BDE

REGNO



Multiple AND rules

• You can have as many rules as you like ANDed together.
• For example:

SELECT regno
FROM car
WHERE colour = ‘BLUE’
AND regno like ‘%5%’
AND owner like ‘Bob %’
;



OR

• OR is like ‘either’. So long as one of the rules is true then the 
filter is true.

• Looks for cars which are EITHER red or blue…

SELECT regno,colour from CAR
WHERE colour = ‘RED’ OR colour = ‘BLUE’

BLUESC04 BFE
BLUEA155 BDE
BLUEJ111 BBB
REDF611 AAA
COLOURREGNO



NOT

• NOT inverts the rule it is put in front of:
• WHERE colour = ‘RED’
• This could be inverted as:
– WHERE colour != ‘RED’
– WHERE NOT colour = ‘RED’

• NOT is not really useful in this example, but comes 
into its own in more complex rulesets.



Precedence

• Precedence is the order in which the rules are evaluated and 
combined together.

• It is NOT in the order they are written.
• Rules are combined together firstly at AND, then OR, and 

finally at NOT.
• Consider : Car has a 5 in reg and is either red or blue.

SELECT regno,colour from car
WHERE colour = ‘RED’ -- Line 1
OR colour = ‘BLUE’ -- Line 2
AND regno LIKE ‘%5%’ -- Line 3



Brackets

• Rewrite as:
SELECT regno,colour from car
WHERE (colour = ‘RED’
OR colour = ‘BLUE’)
AND regno LIKE ‘%5%’

• Might be clearer as:
SELECT regno,colour from car
WHERE ( colour = ‘RED’ OR colour = ‘BLUE’ )
AND regno LIKE ‘%5%’



DISTINCT

• Find all the colours used in cars.

SELECT colour from car;

BLUE
GREEN
BLUE
BLUE
RED
COLOUR



DISTINCT

SELECT DISTINCT colour from car;

GREEN
BLUE
RED
COLOUR



ORDER BY

• It would be nice to be able to order the output using a sort.

• SELECT make from car;

SMART
FIAT
MERCEDES
SKODA
FORD
MAKE



ASCending order

• Sort by alphabetical or numeric order: ASC
• ORDER BY … ASC is the default.

SELECT make from car
ORDER BY make;

SMART
SKODA
MERCEDES
FIAT
FORD
MAKE



DESCending order

• Sort by reverse alphabetical or numeric order: DESC
• ORDER BY … DESC must be selected.

SELECT make from car
ORDER BY make DESC;

FORD
FIAT
MERCEDES
SKODA
SMART
MAKE



Multi Column Sort

• ORDER BY can take multiple columns.

SELECT make,colour FROM car
ORDER BY colour,make;

BLUESMART

REDFORD
GREENFIAT
BLUEMERCEDES

BLUESKODA
COLOURMAKE



IN

• When you have a list of OR, all on the same attribute, then 
IN could be a simpler way:

• Rather Than:
SELECT regno,make FROM car
WHERE make = ‘SKODA’ or make = ‘SMART’

• Have
SELECT regno,make FROM car
WHERE make in (‘SKODA’,’SMART’);



Aggregate Functions

• Aggregate functions allow you to write queries to produce 
statistics on the data in the database.

• These functions are sometimes also called SET functions.

• These include:
– AVG (calculate the average)
– SUM
– MAX
– MIN
– COUNT



AVERAGE

SELECT price FROM car;

13000
6000
22000
11000
12000
PRICE

SELECT avg(price) FROM car;

12800
AVG(PRICE)



SUM

• Add up all the values in a column

SELECT sum(price) FROM car;

64000
SUM(PRICE)



MAX

• What is the maximum value in a column

SELECT max(price) FROM car;

22000
MIN(PRICE)



MIN

• What is the minimum value in a column

SELECT min(price) FROM car;

22000
MIN(PRICE)



COUNT

• How many rows make up a column

SELECT count(price) FROM car;

5
COUNT(PRICE)

• Count(*) is similar, but also counts when price is NULL.

SELECT count(*) FROM car;



COUNT DISTINCT

• Sometimes you do not want to count how many 
rows are in a column, but how many different 
values could be found in that column.

• There is a special variant of count which does this:

SELECT count(colour) from car;

SELECT count(DISTINCT colour) from car;

5
COUNT(PRICE)

3
COUNT(PRICE)



GROUP BY

• Aggregation functions so far have only been shown in 
queries with only the single aggregation function on the 
select line.

• You can combine functions and non-functions on the select 
line.

• To do this you need GROUP BY.

• Question: What is the most expensive car for each colour.
• Intuitively the following seems right, but will not execute!

SELECT colour,max(price)
FROM car;



SELECT colour,price
FROM car;

SELECT colour,max(price)
FROM car
GROUP BY colour;

13000BLUE
6000GREEN
22000BLUE
11000BLUE
12000RED
PRICECOLOUR

6000GREEN
22000BLUE
12000RED
PRICECOLOUR



HAVING

• WHILE allows rules for each row.
• HAVING allows rules for each group of a GROUP BY.

• Consider the problem “Who has more than 1 car”.

• We would like to say:
SELECT owner from car where count(owner) > 1

• Aggregate functions are not allowed in WHERE.
• They are allowed in HAVING.



SELECT owner,count(regno)
FROM car
GROUP BY owner
HAVING count(regno) > 1

OR
SELECT owner
FROM car
GROUP BY owner
HAVING count(regno) > 1

count(*) works just as well in this case.
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