
Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 11

TransactionsTransactions

Unit 4.1Unit 4.1



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 22

Concurrency using 
Transactions
The goal in a ‘concurrent’ DBMS is to allow multiple users to 
access the database simultaneously without interfering with each
other.

A problem with multiple users using the DBMS is that it may be 
possible for two users to try and change data in the database 
simultaneously. If this type of action is not carefully controlled, 
inconsistencies are possible.

To control data access, we first need a concept to allow us to 
encapsulate database accesses. Such encapsulation is called a 
‘Transaction’.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 33

Transactions

Transaction (ACID)
– unit of logical work and recovery
– atomicity (for integrity)
– consistency preservation
– isolation
– durability

Available in SQL
Some applications require nested or long transactions



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 44

Transactions cont...

After work is performed in a transaction, two outcomes are 
possible:

Commit - Any changes made during the transaction by this 
transaction are committed to the database.
Abort - All the changes made during the transaction by this 
transaction are not made to the database. The result of this 
is as if the transaction was never started.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 55

Transaction 
Schedules
A transaction schedule is a tabular representation of how a set of 
transactions were executed over time. This is useful when 
examining problem scenarios. Within the diagrams various 
nomenclatures are used:

READ(a) - This is a read action on an attribute or data item 
called ‘a’.
WRITE(a) - This is a write action on an attribute or data item 
called ‘a’.
WRITE(a[x]) - This is a write action on an attribute or data 
item called ‘a’, where the value ‘x’ is written into ‘a’.
tn (e.g. t1,t2,t10) - This indicates the time at which 
something occurred. The units are not important, but tn
always occurs before tn+1.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 66

Schedules cont...

Consider transaction A, which loads in a bank account balance X (initially 
20) and adds 10 pounds to it. Such a schedule would look like this:

WRITE(X[30])WRITE(X[30])t3t3

TOTAL:=TOTAL+10TOTAL:=TOTAL+10t2t2

TOTAL:=READ(X)TOTAL:=READ(X)t1t1

Transaction ATransaction ATimeTime



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 77

Schedules cont...

Now consider that, at the same time as trans A runs, trans B runs. 
Transaction B gives all accounts a 10% increase. Will X be 32 or 33?

BONUS:=BONUS*110%BONUS:=BONUS*110%t5t5

TOTAL:=TOTAL+10TOTAL:=TOTAL+10t3t3

WRITE(X[30])WRITE(X[30])t4t4

WRITE(X[BONUS])WRITE(X[BONUS])

BALANCE:=READ(X)BALANCE:=READ(X)

Transaction ATransaction A

TOTAL:=READ(X)TOTAL:=READ(X)

Transaction ATransaction A

t6t6

t2t2

t1t1

TimeTime

Woops… X is 22! Depending on the interleaving, X can also be 32, 33, 
or 30. Lets classify erroneous scenarios.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 88

Lost Update scenario

WRITE(R)WRITE(R)t3t3

WRITE(R)WRITE(R)t4t4

READ(R)READ(R)

Transaction ATransaction A

READ(R)READ(R)

Transaction ATransaction A

t2t2

t1t1

TimeTime

Transactopn A’s update is lost at t4, because Transaction B 
overwrites it. B missed A’s update at t4 as it got the value of R at t2.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 99

Uncommitted 
Dependency

ABORTABORTt3t3

WRITE(R)WRITE(R)

Transaction ATransaction A

READ(R)READ(R)

Transaction ATransaction A

t2t2

t1t1

TimeTime

Transaction A is allowed to READ (or WRITE) item R which has been 
updated by another transaction but not committed (and in this case 
ABORTed).



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 1010

Inconsistency Inconsistency 
ScenarioScenario

SUM should have been 120SUM should have been 120

SUM+=READ(Z)SUM+=READ(Z)

SUM+=READ(Y)SUM+=READ(Y)

SUM:=READ(X)SUM:=READ(X)

ActionAction

110110202050505050t8t8

COMMITCOMMIT202050505050t7t7

WRITE(X[50])WRITE(X[50])202050505050t6t6

READ(X)READ(X)202050504040t5t5

WRITE(Z[20])WRITE(Z[20])202050504040t4t4

READ(Z)READ(Z)303050504040t3t3

9090303050504040t2t2

4040303050504040t1t1

SUMSUM
Transaction BTransaction BTransaction ATransaction AZZYYXXTimeTime



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 1111

Serializability

A ‘schedule’ is the actual execution sequence of two or more 
concurrent transactions.
A schedule of two transactions T1 and T2 is ‘serializable’ if 
and only if executing this schedule has the same effect as 
either T1;T2 or T2;T1.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 1212

Precedence Graph

In order to know that a particular transaction schedule can be 
serialized, we can draw a precedence graph. This is a graph of 
nodes and vertices, where the nodes are the transaction names 
and the vertices are attribute collisions. 

The schedule is said to be serialised if and only if there are no 
cycles in the resulting diagram.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 1313

Precedence Graph : 
Method
To draw one;
1. Draw a node for each transaction in the schedule
2. Where transaction A writes to an attribute which transaction 

B has read from, draw an line pointing from B to A.
3. Where transaction A writes to an attribute which transaction 

B has written to, draw a line pointing from B to A.
4. Where transaction A reads from an attribute which 

transaction B has written to, draw a line pointing from B to A.



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 1414

Example 1Example 1

Consider the following Schedule:Consider the following Schedule:

WRITE(B)WRITE(B)t6t6

WRITE(B)WRITE(B)t5t5

READ(B)READ(B)t4t4

READ(A)READ(A)t3t3

READ(B)READ(B)t2t2

READ(A)READ(A)t1t1

T2T2T1T1TimeTime

T1 T2

B

B



Dr Gordon Russell, Copyright Dr Gordon Russell, Copyright 
@ Napier University@ Napier University

Unit 4.1 Unit 4.1 -- ConcurrencyConcurrency 1515

Example 2Example 2

Consider the following Schedule:Consider the following Schedule:

WRITE(C)WRITE(C)t6t6

WRITE(B)WRITE(B)t7t7

READ(B)READ(B)

READ(A)READ(A)

T2T2

WRITE(C)WRITE(C)t8t8

WRITE(A)WRITE(A)t5t5

t4t4

t3t3

READ(B)READ(B)t2t2

READ(A)READ(A)t1t1

T3T3T1T1TimeTime

T1

T2

T3

B

A

AC


