
Napier University
Edinburgh

Database Systems
Student Notes

CO22001/CO72010

Version 2.0

School Of Computing

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 1

This Document 7

Unit 1.1 - Introduction 8
Database System 8

Data 8
Hardware 9
Software 9

Users 9
Database Architecture 9

External View 11
Conceptual View 11
Internal View 12
Mappings 12

DBMS 13
Database Administrator 13
DBA Tools 14
Facilities and Limitations 14

Data Independence 15
Data Redundancy 15
Data Integrity 16

Unit 1.2 - SQL 17
Database Models 18
Relational Databases 18
Relational Data Structure 18
Domain and Integrity Constraints 19
Menu Example 19
External vs Logical 20
Columns or Attributes 20
Rows or Tuples 20
Primary Keys 20
Employee Table - Columns 21
Jobhistory Table - Columns 21
Foreign Keys 21
SQL 21
SQL Basics 22
CREATE table employee 22
CREATE Table Jobhistory 22
SQL SELECT 23
Comparison 23
SELECT with BETWEEN 23
Pattern Matching 24
ORDER and DISTINCT 24
Unit 1.3 - Logical Operators 25
IN 25
Other SELECT capabilities 25
Simple COUNT examples 26
Grouped COUNTs 26
Joining Tables 26
SELECT - Order of Evaluation 27

12/08/02 18:16 CO22001 Database Systems

Page 2 Copyright © 2001 Napier University +44 141 455 2754

One-to-Many Relationships 27
Many-to-Many Relationships. 27
Aliases 28
Aliases with Self Joins 28
Unit 1.4 - Subqueries 30
Simple Example 30
Subqueries with ANY, ALL 30
Subqueries with IN, NOT IN 30
Subqueries with EXISTS 31
UNION of Subqueries 31
Views 31
View Manipulation 32
VIEW update, insert and delete 32
Other SQL Statements 33
INSERT 34
DELETE 34
UPDATE 34

Unit 2.1: Database Analysis 36
Entity Relationship Modelling 36

Database Analysis Life Cycle 37
Three-level Database Model 38

Entity Relationship Modelling 39
Entities 40
Attribute 40
Keys 41
Relationships 41
Degree of a Relationship 41
Degree of a Relationship 42
Replacing ternary relationships 42
Cardinality 43
Optionality 44
Entity Sets 45
Confirming Correctness 45
Deriving the relationship parameters 45
Redundant relationships 46
Redundant relationships example 46
Splitting n:m Relationships 46
Splitting n:m Relationships - Example 47
Constructing an ER model - Entities 47
Constructing an ER model - Attributes 47
Constructing an ER model - Relationships 48

Unit 2.2 - Entity Relationship Modelling - 2 49
Country Bus Company 49
Entities 49
Relationships 49
Draw E-R Diagram 50
Attributes 50
Problems with ER Models 51
Fan traps 52
Chasm traps 52
Enhanced ER Models (EER) 53
Specialisation 53
Generalisation 54

Unit 2.3 - Mapping ER Models into Relations 54

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 3

What is a relation? 54
Foreign keys 55
Preparing to map the ER model 55
Mapping 1:1 relationships 56
Mandatory at both ends 56
When not to combine 56
If not combined... 56
Example 57
Mandatory Optional 57
Mandatory Optional - Subsume? 58
Summary... 59
Optional at both ends... 59
Mapping 1:m relationships 60
Mapping n:m relationships 60
Summary 61

Unit 2.4 - Advanced ER Mapping 61
Mapping parallel relationships 61
Mapping 1:m in unary relationships 62
Mapping superclasses and subclasses 62
Example 63

Unit 3.1 - Normalisation 65
What is normalisation? 65
Integrity Constraints 66
Understanding Data 66

Student - an unnormalised table with repeating groups 67
Student #2 - Flattened Table 68

First Normal Form 69
Flatten table and Extend Primary Key 69
Decomposing the relation 70
Second Normal Form 72
Third Normal Form 74
Summary: 1NF 76
Summary: 2NF 76
Summary: 3NF 77

Unit 3.2 - Normalisation Continued 77
Boyce-Codd Normal Form (BCNF) 77
Normalisation to BCNF - Example 1 78
Summary - Example 1 81
Example 2 81
Problems BCNF overcomes 82
Fourth Normal Form 83
Example 84
Fifth Normal Form 85
Join Dependency Decomposition 85
Spurious results 85
Returning to the ER Model 86

Unit 3.3 - Relational Algebra 86
Terminology 86
Operators - Write 87
Operators - Retrieval 87
Relational SELECT 87
Relational PROJECT 87
SELECT and PROJECT 88

12/08/02 18:16 CO22001 Database Systems

Page 4 Copyright © 2001 Napier University +44 141 455 2754

Set Operations - semantics 88
SET Operations - requirements 88
UNION Example 89
INTERSECTION Example 89
DIFFERENCE Example 90
CARTESIAN PRODUCT 90
CARTESIAN PRODUCT example 90
JOIN Operator 90
JOIN Example 91
Natural Join 91
OUTER JOINs 91
OUTER JOIN example 1 92
OUTER JOIN example 2 92

Unit 3.4 - Relational Algebra - Example 92
Symbolic Notation 93
Usage 93
Rename Operator 94
Derivable Operators 94
Equivalence 94
Equivalences 95
Comparing RA and SQL 95
Comparing RA and SQL 96

Unit 4.1 - Concurrency using Transactions 97
Transactions 97
Transaction Schedules 97
Lost Update scenario. 99
Uncommitted Dependency 99
Inconsistency 100
Serialisability 100
Precedence Graph 100
Precedence Graph : Method 100
Example 1 101
Example 2 101

Unit 4.2 - Concurrency 102
Locking 102
Locking - Uncommitted Dependency 103
Deadlock 103
Deadlock Handling 104
Deadlock Resolution 105
Two-Phase Locking 105
Other Database Consistency Methods 105
Timestamping rules 106

Unit 4.3 – Storage Structures 107
The Physical Store 107
Why not all Main Memory? 107
Secondary Storage - Blocks 107
Hard Drives 108
DBMS Data Items 108
File Organisations 108
Storage Scenario 109
Serial Organisation 109
Sequential Organisation 110
Hash Organisation 110

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 5

Indexed Sequential Access Method 111
ISAM Example 111
B+ Tree Index 111
B+ Tree Example 112
Building a B+ Tree 112
B+ Tree Build Example 113
Index Structure and Access 113
Costing Index and File Access 114
Use of Indexes 114

Unit 4.4 - Recovery 115
Recovery: the dump 115
Recovery: the transaction log 116
Deferred Update 116
Example 116
Immediate Update 117
Example 118
Rollback 119

Unit 5.1 - Embedded SQL 120
Interactive SQL 120
Embedded SQL 120
SQL Precompiler 120
Sharing Variables 121
Connecting to the DBMS 121
Queries producing a single row 121
SELECT with a single result 122
Cursors - SELECT many rows 122
Fetching values 122
Declaring and Opening a Cursor 123
Program Example 123
Summary 123

Unit 5.2a - Database Administrator 124
DBA Tools 125
DBMS Product Evaluation 125
Data Structures Supported 125
Performance 126
Tools 126

Unit 5.2b - Security 127
Granularity of DBMS Security 128
DBMS-level Protection 129
User-level Security for SQL 129
Naming Hierarchy 129
The GRANT command 130

Unit 5.3 - Data Dictionary 131
Benefits of a DDS 131
DDS Facilities 131
DD Information 132
DD Management 132
Management Objectives 133
Advanced Facilities 133
Management Advantages 133
Management Disadvantages 134

12/08/02 18:16 CO22001 Database Systems

Page 6 Copyright © 2001 Napier University +44 141 455 2754

Tutorial - ER Diagram Examples 1-2 135
Example 1 135
Example 2 135

Tutorial - ER Diagram Examples 3-5 135
Example 3 135
Example 4 136
Example 5 136

Multiple Choice - HOWTO 137
The Answer Sheet 137

Entering an answer 138
Reason/Assertion 139
Example 140

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 7

This Document
This document is for use with a variety of Napier University modules, and forms a good
introduction to the basics of database systems for university students. The modules at Napier
which use this module include:

• CO22001 – Database Systems. This is a 2nd year module for computing students.

• CS22010 – Database Systems 2. This is the old name for CO22001.

• CO72010 – Database Systems. This is a postgraduate module taught on some of our
postgraduate conversion courses.

The notes are for use with both locally taught modules and those affiliated to Napier University.
If you wish to use these notes for other purposes please let me know. Suggestions and
corrections welcomed.

Dr Gordon Russell (g.russell@napier.ac.uk)

Acknowledgments:

Andrew Cumming
Ken Chisholm
Colin Hastie
Jim Murray
Alison Varey

12/08/02 18:16 CO22001 Database Systems

Page 8 Copyright © 2001 Napier University +44 141 455 2754

 Unit 1.1 - Introduction

Unit 1.1 - Introduction
Relational database systems have became increasingly popular single the late 1970's. They offer
a powerful method for storing data in an application-independent manner. This means for many
enterprises the database is at the core of the I.T. strategy. Developments can progress around a
relatively stable database structure which is secure, reliable, efficient, and transparent.

In early systems, each suite of application programs had its own independent master file. The
duplication of data over master files could lead to inconsistent data.

Efforts to use a common master file for a number of application programs resulted in problems
of integrity and security. The production of new application programs could require amendments
to existing application programs - `unproductive maintenance'.

Data structuring techniques, developed to exploit random access storage devices, increased the
complexity of the insert, delete and update operations on data. As a first step towards a DBMS,
packages of subroutines were introduced to reduce programmer effort in maintaining these data
structures. However, the use of these packages still requires knowledge of the physical
organization of the data.

Database System
A database system is a computer-based system to record and maintain information. The
information concerned can be anything of significance to the organisation for whose use it is
intended. A database system involves four major components: data, hardware, software and
users.

Data

A database is a repository for data which, in general, is both integrated and shared. Integration
means that the database may be thought of as a unification of several otherwise distinct files,
with any redundancy among those files partially or wholly eliminated. The sharing of a database
refers to the sharing of data by different users, in the sense that each of those users may have
access to the same piece of data and may use it for different purposes. Any given user will
normally be concerned with only a subset of the whole database.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 9

Simplified view of a Database System

Hardware

The hardware involved consists of secondary storage devices (disks) on which the data resides,
together with a processor, control units, channels and so forth. The database is assumed to be too
large to be held in its entirety in the computer's primary storage, therefore there is a need for
software to manage that data.

Software

The software that allows one or many persons to use and/or modify data stored in this database is
a database management system (DBMS). A DBMS allows the user to deal with the data in
abstract terms (logical data structure).

Users
There are three broad classes of user:

1. the application programmer, responsible for writing programs in some high-level
language such as COBOL, C++, etc.

2. the end-user, who accesses the database via a query language

3. the database administrator (DBA), who controls all operations on the database

Database Architecture
DBMSs do not all confirm to the same architecture.

• The three-level architecture forms the basis of modern database architectures.

• this is in agreement with the ANSI/SPARC study group on Database Management

Users

Database

Users

Users

12/08/02 18:16 CO22001 Database Systems

Page 10 Copyright © 2001 Napier University +44 141 455 2754

Systems.

• ANSI/SPARC is the American National Standards Institute/Standard Planning
and Requirement Committee).

• The architecture for DBMSs is divided into three general levels:

1. external

2. conceptual

3. internal

Three level database architecture

1. the external level : concerned with the way individual users see the data

2. the conceptual level : can be regarded as a community user view - a formal description of
data of interest to the organisation, independent of any storage considerations.

3. the internal level : concerned with the way in which the data is actually stored

Conceptual Level
(community user view)

External View
(Individual user view)

Internal Level
(Storage view)

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 11

External
View A

External
Schemas

External External
View B View C

Data Model
(Conceptual View)

Stored Database
(Internal View)

Conceptual/Internal
Mapping

External/Conceptual Mappings

Database
Management
System
(DBMS)

User 1 User 2 User 3 User 4

External View

• A user is anyone who needs to access some portion of the data. They may range from
application programmers to casual users with ad-hoc queries. Each user has a language at
his/her disposal.

• The application programmer may use a high level language (e.g. COBOL) while
the casual user will probably use a query language.

• Regardless of the language used, it will include a data sub-language DSL which is
that subset of the language which is concerned with storage and retrieval of
information in the database and may or may not be apparent to the user.

• A DSL is a combination of two languages:

1. a data definition language (DDL) - provides for the definition or description of
database objects

2. a data manipulation language (DML) - supports the manipulation or processing of
database objects.

• Each user sees the data in terms of an external view:

• Defined by an external schema, consisting basically of descriptions of each of the
various types of external record in that external view, and also a definition of the
mapping between the external schema and the underlying conceptual schema.

Conceptual View

• An abstract representation of the entire information content of the database.

• It is in general a view of the data as it actually is, that is, it is a `model' of the `real-world'.

• It consists of multiple occurrences of multiple types of conceptual record, defined in the
conceptual schema.

• To achieve data independence, the definitions of conceptual records must involve
information content only.

12/08/02 18:16 CO22001 Database Systems

Page 12 Copyright © 2001 Napier University +44 141 455 2754

• storage structure is ignored

• access strategy is ignored

• The conceptual schema, as well as definitions, contains authorisation and validation
procedures.

Internal View

• The internal view is a very low-level representation of the entire database consisting of
multiple occurrences of multiple types of internal (stored) records.

• It is however at one remove from the physical level since it does not deal in terms of
physical records or blocks nor with any device specific constraints such as cylinder or
track sizes. Details of mapping to physical storage is highly implementation specific and
are not expressed in the three-level architecture.

• The internal view described by the internal schema:

• defines the various types of stored record

• what indices exist

• how stored fields are represented

• what physical sequence the stored records are in

• In effect the internal schema is the storage definition structure.

Mappings

• The conceptual/internal mapping:

• defines conceptual and internal view correspondence

• specifies mapping from conceptual records to their stored counterparts

• An external/conceptual mapping:

• defines a particular external and conceptual view correspondence

• A change to the storage structure definition means that the conceptual/internal mapping
must be changed accordingly, so that the conceptual schema may remain invariant,
achieving physical data independence.

• A change to the conceptual definition means that the conceptual/external mapping must
be changed accordingly, so that the external schema may remain invariant, achieving
logical data independence.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 13

DBMS
The database management system (DBMS) is the software that:

• handles all access to the database

• is responsible for applying the authorisation checks and validation procedures

Conceptually what happens is:

1. A user issues an access request, using some particular DML.

2. The DBMS intercepts the request and interprets it.

3. The DBMS inspects in turn the external schema, the external/conceptual mapping, the
conceptual schema, the conceptual internal mapping, and the storage structure definition.

4. The DBMS performs the necessary operations on the stored database.

Database Administrator
The database administrator (DBA) is the person (or group of people) responsible for overall
control of the database system. The DBA's responsibilities include the following:

• deciding the information content of the database, i.e. identifying the entities of interest to
the enterprise and the information to be recorded about those entities. This is defined by
writing the conceptual schema using the DDL

• deciding the storage structure and access strategy, i.e. how the data is to be represented
by writing the storage structure definition. The associated internal/conceptual schema
must also be specified using the DDL

• liaising with users, i.e. to ensure that the data they require is available and to write the
necessary external schemas and conceptual/external mapping (again using DDL)

• defining authorisation checks and validation procedures. Authorisation checks and
validation procedures are extensions to the conceptual schema and can be specified using
the DDL

• defining a strategy for backup and recovery. For example periodic dumping of the
database to a backup tape and procedures for reloading the database for backup. Use of a
log file where each log record contains the values for database items before and after a
change and can be used for recovery purposes

• monitoring performance and responding to changes in requirements, i.e. changing details
of storage and access thereby organising the system so as to get the performance that is
`best for the enterprise'

12/08/02 18:16 CO22001 Database Systems

Page 14 Copyright © 2001 Napier University +44 141 455 2754

DBA Tools
To facilitate these tasks the DBA has a number of tools at his/her disposal, e.g.

• loading routines

• reorganisation routines

• journaling routines (log files)

• recovery routines

• statistical analysis routines

One of the most important tools of the DBA is the data dictionary. The data dictionary is simply
a database that contains data about data, i.e. descriptions of other objects in the system.

Facilities and Limitations
The facilities offered by DBMS vary a great deal, depending on their level of sophistication. In
general, however, a good DBMS should provide the following advantages over a conventional
system:

• Independence of data and program - This is a prime advantage of a database. Both the
database and the user program can be altered independently of each other thus saving
time and money which would be required to retain consistency.

• Data shareability and non-redundance of data - The ideal situation is to enable
applications to share an integrated database containing all the data needed by the
applications and thus eliminate as much as possible the need to store data redundantly.

• Integrity - With many different users sharing various portions of the database, it is
impossible for each user to be responsible for the consistency of the values in the
database and for maintaining the relationships of the user data items to all other data
item, some of which may be unknown or even prohibited for the user to access.

• Centralised control - With central control of the database, the DBA can ensure that
standards are followed in the representation of data.

• Security - Having control over the database the DBA can ensure that access to the
database is through proper channels and can define the access rights of any user to any
data items or defined subset of the database. The security system must prevent corruption
of the existing data either accidently or maliciously.

• Performance and Efficiency - In view of the size of databases and of demanding database
accessing requirements, good performance and efficiency are major requirements.
Knowing the overall requirements of the organisation, as opposed to the requirements of
any individual user, the DBA can structure the database system to provide an overall
service that is `best for the enterprise'.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 15

Data Independence

• This is a prime advantage of a database. Both the database and the user program can be
altered independently of each other.

• In a conventional system applications are data-dependent. This means that the way in
which the data is organised in secondary storage and the way in which it is accessed are
both dictated by the requirements of the application, and, moreover, that knowledge of
the data organisation and access technique is built into the application logic.

• For example, if a file is stored in indexed sequential form then an application must know

• that the index exists

• the file sequence (as defined by the index)

The internal structure of the application will be built around this knowledge. If, for
example, the file was to be replaced by a hash-addressed file major modifications would
have to be made to the application.

• Such an application is data-dependent - it is impossible to change the storage structure
(how the data is physically recorded) or the access strategy (how it is accessed) without
affecting the application, probably drastically. The portions of the application requiring
alteration are those that communicate with the file handling software - the difficulties
involved are quite irrelevant to the problem the application was written to solve.

• it is undesirable to allow applications to be data-dependent - different applications will
need different views of the same data.

• the DBA must have the freedom to change storage structure or access strategy in
response to changing requirements without having to modify existing applications.

• Data independence can be defines as
`The immunity of applications to change in storage structure and access strategy'.

Data Redundancy
• In non-database systems each application has its own private files

• This can often lead to redundancy in stored data, with resultant waste in storage
space.

• in a database the data is integrated

• the database may be thought of as a unification of several otherwise distinct data
files, with any redundancy among those files partially or wholly eliminated.

• Data integration is generally regarded as an important characteristic of a database

• The avoidance of redundancy should be an aim, however, the vigour with which

12/08/02 18:16 CO22001 Database Systems

Page 16 Copyright © 2001 Napier University +44 141 455 2754

this aim should be pursued is open to question.

Redundancy is

• direct if a value is a copy of another

• indirect if the value can be derived from other values:

• simplifies retrieval but complicates update

• conversely integration makes retrieval slow and updates easier

• Data redundancy can lead to inconsistency in the database unless controlled.

• the system should be aware of any data duplication - the system is responsible for
ensuring updates are carried out correctly.

• a DB with uncontrolled redundancy can be in an inconsistent state - it can supply
incorrect or conflicting information

• a given fact represented by a single entry cannot result in inconsistency - few
systems are capable of propagating updates i.e. most systems do not support
controlled redundancy.

Data Integrity
This describes the problem of ensuring that the data in the database is accurate...

• inconsistencies between two entries representing the same `fact' give an example of lack
of integrity (caused by redundancy in the database).

• integrity constraints can be viewed as a set of assertions to be obeyed when updating a
DB to preserve an error-free state.

• even if redundancy is eliminated, the DB may still contain incorrect data.

• integrity checks which are important are checks on data items and record types.

Integrity checks on data items can be divided into 4 groups:

1. type checks

• e.g. ensuring a numeric field is numeric and not a character - this check should be
performed automatically by the DBMS.

2. redundancy checks

• direct or indirect (see data redundancy) - this check is not automatic in most
cases.

3. range checks

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 17

• e.g. to ensure a data item value falls within a specified range of values, such as
checking dates so that say (age > 0 AND age < 110).

4. comparison checks

• in this check a function of a set of data item values is compared against a function
of another set of data item values.

• e.g. the max salary for a given set of employees must be less than the min salary
for the set of employees on a higher salary scale.

• A record type may have constraints on the total number of occurrences, or on the
insertions and deletions of records.

• for example in a patient database there may be a limit on the number of x-ray
results for each patient

• or the details of a patients visit to hospital must be kept for a minimum of 5 years
before it can be deleted

• Centralized control of the database helps maintain integrity

• permits the DBA to define validation procedures to be carried out whenever any
update operation is attempted (update covers modification, creation and deletion).

• Integrity is important in a database system

• an application run without validation procedures can produce erroneous data
which can then affect other applications using that data.

Unit 1.2 - SQL 1

Unit 1.2 - SQL
This unit is focused on teaching how to access the data within a DBMS. This module
concentrates of a particular class of DBMS, that of the `relational database'. Each DBMS can
have a variety of methods to access the data contained therein, but rather than each vendor
inventing a new approach, standards do exist to express access languages. These languages are
often called Data Sub-Languages (DSL), and are really a combination of two languages; a data
definition language (DDL) which provides for the definition or description of database objects
and a data manipulation language (DML) which supports the manipulation or processing of such
objects. This unit uses SQL as the DSL to access a database. However, before SQL is presented,
a number of terms must first be discussed.

12/08/02 18:16 CO22001 Database Systems

Page 18 Copyright © 2001 Napier University +44 141 455 2754

Database Models
A data model comprises

• a data structure

• a set of integrity constraints

• operations associated with the data structure

Examples of data models include:

• hierarchic

• network

• relational

Relational Databases
The relational data model comprises:

• relational data structure

• relational integrity constraints

• relational algebra or equivalent (SQL)

• SQL is an ISO language based on relational algebra

• relational algebra is a mathematical formulation

Relational Data Structure
A relational data structure is a collection of tables or relations.

• A relation is a collection of rows or tuples

• A tuple is a collection of columns or attributes

• A domain is a pool of values from which the actual attribute values are taken.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 19

Description Price

Tuple

Attributes

Domain

MENU Relation or
Table

Domain and Integrity Constraints
• Domain Constraints

• limit the range of domain values of an attribute

• specify uniqueness and `nullness' of an attribute

• specify a default value for an attribute when no value is provided.

• Entity Integrity

• every tuple is uniquely identified by a unique non-null attribute, the primary key.

• Referential Integrity

• rows in different tables are correctly related by valid key values (`foreign' keys
refer to primary keys).

Menu Example
Description Price

Large Cola £0.99

Cheeseburger £1.99

Burger Royalé £3.49

12/08/02 18:16 CO22001 Database Systems

Page 20 Copyright © 2001 Napier University +44 141 455 2754

External vs Logical
The way a menu is to be shown to a customer may not be the way in which the data is held in a
logical model.

The menu model could hold tables about ingredients, individual ingredient costs, overheads, and
tax.

The menu provided to a customer is derived from these other tables. It provides a customer-
oriented view of the base data.

Columns or Attributes
Each column is given a name which is unique within a table

Each column holds data of one specified type. E.g.

 integer decimal
 character text data
 -- the range of values can be further constrained

If – a column of a row contains no data, we say it is NULL. For example, an unmarked
assessment has no mark. A NULL value may also indicate that the value is unavailable or
inappropriate. For example, a lost mark, or a mark more than 100%.

Rows or Tuples
All the rows of a table are different. One row records a transaction in the bank case

Columns in a specified row may contain no value

• a transaction cannot have credit and debit values simultaneously.

Some columns must contain values for all rows

• date and source, which make the row unique, in the bank account case.

Primary Keys
A table requires a key which uniquely identifies each row in the table. This is entity integrity.

The key could have one column, or it could use all the columns. It should not use more columns
than necessary. A key with more than one column is called a composite key.

A table may have several possible keys, the candidate keys, from which one is chosen as the
primary key.

No part of a primary key may be NULL.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 21

i If the rows of the data are not unique, it is necessary to generate an artificial primary key.

Employee Table - Columns
empno fornames surname depno telno dob

001 Hillary Bobbit 01 4677 1/1/1968

002 Pat Pettit 01 4678 2/1/1968

003 Pete Pettit 02 4655 2/1/1968

• What is a suitable primary key?

• An artificial key (empno) must be generated since it is possible for two distinct
employees to have all other attributes the same.

Jobhistory Table - Columns
empno startdate salary position enddate

001 1/1/2000 10000 Tea Maker 1/5/2000

001 2/5/2000 90000 Boss NULL

002 7/5/1989 12000 WageSlave NULL

003 7/5/1989 12000 Jobworth NULL

• The primary key empno + startdate uniquely identifies each row. No employee starts two
different jobs on the same day.

• empno relates a Jobhistory row to the corresponding Employee row - it is the primary key
in the Employee table and a foreign key in the Jobhistory table.

Foreign Keys
A foreign key is a column in one table that refers to the primary key of a another table by
holding the same value.

A foreign key maintains a relationship between the tables. You can’t change a primary key value
to without changing the foreign key values that refer to it.

The column empno (foreign key) in the Jobhistory table must have the same value as one of the
empno (primary key) values in the Employee table. This is an example of referential integrity.

SQL
An international Standard Language for manipulating relational databases. It is based on an IBM
product called the Structured Query Language.

12/08/02 18:16 CO22001 Database Systems

Page 22 Copyright © 2001 Napier University +44 141 455 2754

SQL creates and manipulates tables of data (relations) - it is a data handling language, not a
programming language.

A table is a collection of rows (tuples or records).

A row is a collection of columns (attributes).

SQL Basics
Basic SQL Statements include:

• CREATE - a data structure

• SELECT - read one or more rows from a table

• INSERT - one or more rows into a table

• DELETE - one or more rows from a table

• UPDATE - change the column values in a row

• DROP - a data structure

CREATE table employee

 CREATE TABLE employee (
 empno INTEGER PRIMARY KEY,
 surname VARCHAR(15),
 forenames VARCHAR(30),
 dob date,
 address VARCHAR(50),
 telno VARCHAR(50),
 depno INTEGER REFERENCES department(depno),
 CHECK(dob IS NULL OR
 (dob > '1-jan-1950' AND dob < '31-dec-1980')
)
);

CREATE Table Jobhistory

 CREATE TABLE jobhistory (
 empno INTEGER REFERENCES employee(empno)
 position VARCHAR(30),
 startdate date,
 enddate date,
 salary DECIMAL(8,2),
 PRIMARY KEY(empno,position)
);

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 23

SQL SELECT

 SELECT column-list -- the simplest SQL SELECT
 FROM table_list;

 SELECT * -- list ALL employee data
 FROM employee -- for each employee
 ;

 SELECT depno,forenames,surname -- list SOME employee
 FROM employee -- data for each employee
 ;

Comparison

 SELECT column-list --
 FROM table_list
 [WHERE condition]; -- Comparison Operators:
 =,!=,<>,<,<=,>,>=
 SELECT empno,surname
 FROM employee
 WHERE depno = 3;

 SELECT forenames,surname
 FROM employee
 WHERE dob > '2-jan-1958';

 SELECT empno -- who is or have been
 FROM jobhistory -- a programmer?
 WHERE position = 'Programmer';

 SELECT empno,position -- what are employee's
 FROM jobhistory -- current positions?
 WHERE enddate IS NULL;

Note that NULL indicates a value which is missing, not known, inappropriate, etc. NULL is not
a blank or zero. NULL cannot be tested for equality with other NULL values.

SELECT with BETWEEN

 SELECT empno,surname,forenames,dob
 FROM employee
 WHERE dob BETWEEN '30-jun-1954' AND '1-jan-1959';

Note that the BETWEEN predicate is inclusive. The above condition is equivalent to :

 WHERE dob >= '30-jun-1954' AND <='1-jan-1959';

12/08/02 18:16 CO22001 Database Systems

Page 24 Copyright © 2001 Napier University +44 141 455 2754

Pattern Matching
Simple pattern matching is carried out using LIKE:
LIKE 'pattern-to-match'
Where the pattern can include special wildcard characters:

 % 0 or more arbitrary characters
 _ any one character

 SELECT forenames, surname, address
 FROM employee
 WHERE address LIKE '%Edinburgh%';

ORDER and DISTINCT

 SELECT [DISTINCT] column_list
 FROM table_list
 [WHERE condition]
 [ORDER BY attribute[DESC/ASC]
 [,attribute [DESC,ASC]]...];

Note that ASCending order is the default

 SELECT DISTINCT empno
 FROM jobhistory
 WHERE startdate < '1-jan-1980'
 ORDER BY empno DESC;

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 25

Unit 1.3 - SQL 2

Unit 1.3 - Logical Operators
• NOT, AND, OR (decreasing precedence),

the usual operators on boolean values.

Fine those who are neither accountants nor analysts who are currently paid £16,000 to £30,000:

 SELECT empno
 FROM jobhistory
 WHERE salary BETWEEN 16000 AND 30000
 AND enddate IS NULL
 AND NOT (position LIKE '%Accountant%' OR
 position LIKE '%Analyst%');

IN
• IN (list of values) determines whether a specified value is in a set of one or more listed

values.

List the names of employees in departments 3 or 4 born before 1950:

 SELECT forenames,surname
 FROM employee
 WHERE depno IN (3,4)
 AND dob < '1-jan-1950';

Other SELECT capabilities
• SET or AGGREGATE functions

• COUNT counts the rows in a table or group

• SUM, AVERAGE, MIN, MAX - undertake the indicated operation on numeric
columns of a table or group.

• GROUP BY - forms the result of a query into groups. Set functions can then be applied
to these groups.

• HAVING - applies conditions to choose GROUPS of interest.

12/08/02 18:16 CO22001 Database Systems

Page 26 Copyright © 2001 Napier University +44 141 455 2754

Simple COUNT examples
• How many employees are there?

 SELECT COUNT(*)
 FROM employee;

• What is the total salary bill?

 SELECT SUM(salary) totalsalary
 FROM jobhistory
 WHERE enddate IS NULL;

NOTE - the column title, `totalsalary', to be printed with the result.

Grouped COUNTs
• How many employees are there in each department?

 SELECT depno, COUNT(depno)
 FROM employee
 GROUP BY depno;

• How many employees are there in each department with more than 6 people?

 SELECT depno, COUNT(depno)
 FROM employee
 GROUP BY depno
 HAVING COUNT(depno) > 6;

The select lists above can include only set functions and the column(s) specified in the GROUP
BY clause.

Joining Tables
• The information required to answer a query may be spread over two or more tables

• Two tables in a FROM clause are joined so that every row in one table is combined with
every row in the other table. The combined table is called the Cartesian Product.

• A table with M rows combined with a table of N rows will produce a Cartesian Product
of M × N rows;

• The tables in a query are usually related by foreign keys. Rows of the Cartesian Product
where foreign keys do not match the primary keys they refer to are meaningless.

• Join conditions in the WHERE clause equating foreign keys to primary keys eliminate
invalid row combinations from the Cartesian Product.

• Join using the equality comparison operator are called Equi-joins.

• If there are N tables to be joined, then (N-1) join conditions will be required (If there is a

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 27

compound primary key has say two attributes its join condition will require two
conditional statements).

• Further conditions may be included to obtain just those rows required to satisfy the query.

List the numbers, names and current positions of employees in departments 3 or 4 who were
born before 1950:

 SELECT employee.empno, forenames,surname,position
 FROM employee,jobhistory
 WHERE employee.empno = jobhistory.empno -- Equi-join
 AND depno IN (3,4)
 AND dob < '1-jan-1950'
 AND enddate IS NULL;

NOTE – that the order of the WHERE predicates is not significant, and the need to always
qualify empno with the table name.

SELECT - Order of Evaluation

 SELECT [DISTINCT] column_name 6,5 eliminate unwanted data
 FROM label_list 1 Cartesian Product
 [WHERE condition] 2 eliminate unwanted rows
 [GROUP BY column_list 3 group rows
 [HAVING condition]] 4 eliminate unwanted groups
 [ORDER BY column_list[DESC]] 7 sort rows
The last four components are optional.

One-to-Many Relationships

empno

1
2
3
4
5
6
7
8

etc

other columns

etc

...

...

...

...

...

...

...

...

empno

1
1
1
1
2
2
2
3

etc

other columns

etc

...

...

...

...

...

...

...

...

employee jobhistory

AccountsManager
AssistantAccountsManager
Accountant
Junior Accountant
AssistantAccountsManager
Accountant
Junior Accountant
Accountant
etc

position

primary (of 2 foreign keys)primary

Many-to-Many Relationships.

 create table course (courseno integer primary key,
 cname varchar(20),
 cdate date);

• Given the above course table, relationships between employees and courses can be
represented by a table, commonly called a linker table, which implements many-to-many
relationships

12/08/02 18:16 CO22001 Database Systems

Page 28 Copyright © 2001 Napier University +44 141 455 2754

• empno - foreign key references employer

• course - foreign key references course

The `linker table' that implements the many-to-many relationship:

create table empcourse
(
 empno integer references employee (empno),
 courseno integer references (courseno),
 primary key (empno,courseno)
);

The primary key of empcourse is the combination (empno,course) and must be unique.

A linker table would commonly also hold information about the relationship. For the example
above, the assessment of the employer on a particular course might usefully be included.

empno

1
2
3
4
5
6
7
8

etc

other

etc

...

...

...

...

...

...

...

...

1
2
3
4
5
6
7
8

employee

primary
etc

courseno

etcetc

empno courseno other

etc

...

...

...

...

...

...

...

...

1
1
2
2
7
7
8
8

1
2
1
2
3
4
3
4

reference primary

courseempcours

Aliases
• Temporary labels, aliases can be defined for table names in the FROM clause and can

then be used wherever the table name might appear.

• Aliases may simply be a shorthand.

List employee numbers with surname and current job title:

 SELECT emp.empno, emp.surname, jh.position
 FROM employee emp, jobhistory jh
 WHERE emp.empno = jh.empno
 AND jh.enddate IS NULL;

Aliases with Self Joins
• aliases become essential if a table appears more than once in an enquiry, as when it is

joined to itself (Self Join).

Name employees younger than Liza Brunell:

 SELECT young.surname, young.forenames
 FROM employee young, employee liza

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 29

 WHERE liza.forenames = 'Liza'
 AND liza.surname = 'Brunell'
 AND young.dob liza.dob;

Note

liza is the employee table searched for Liza Brunell.

young is the employee table searched for employees younger than Liza Brunell.

12/08/02 18:16 CO22001 Database Systems

Page 30 Copyright © 2001 Napier University +44 141 455 2754

 Unit 1.4 - SQL 3

Unit 1.4 - Subqueries
• One SELECT query can be used within another. It appear in the WHERE condition and

is then known as a subquery

• A subquery can return only one attribute having zero or more values

• A subquery may provide a simpler query format than a self-join

Simple Example
Name employees younger than Liza Brunell:

 SELECT surname,forenames
 FROM employee
 WHERE dob <
 (SELECT dob FROM employee -- subquery
 WHERE forenames = 'Liza'
 AND surname = 'Brunell');

Note - there is no need to use aliases for the employee table since the main query does not see
the table used by the subquery and the subquery does not use the table employed by the main
query.

Subqueries with ANY, ALL
• ANY or ALL can be used to qualify tests carried out on the values in the set returned by a

subquery.

List employees currently earning less than anyone now in programming:

 SELECT empno FROM jobhistory
 WHERE salary < ALL (
 SELECT salary FROM jobhistory -- subquery
 WHERE position LIKE '%Programmer%'
 AND enddate IS NULL)
 AND enddate IS NULL;

Subqueries with IN, NOT IN
• IN and NOT IN can be used to test if a value is or is not present in the set of values

returned by a subquery

List the names and employee numbers of all those who have never been on a training course:

 SELECT empno,forenames,surname

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 31

 FROM employee
 WHERE empno NOT IN
 (SELECT DISTINCT empno
 FROM empcourse);

Subqueries with EXISTS
• EXISTS tests if a set returned by a subquery is empty

List the employee number and job title of all those doing a unique job:

 SELECT empno
 FROM jobhistory mainjh
 WHERE enddate IS NULL
 AND NOT EXISTS (
 SELECT empno
 FROM jobhistory subjh
 WHERE enddate IS NULL
 AND mainjh.position = subjh.position
 AND mainjh.empno != subjh.empno);

Note that aliases are needed to enable references from subquery to main query

UNION of Subqueries
• A query included two or more subqueries connected by a set operation such as UNION

(MINUS or INTERSECT).

• UNION returns all the distinct rows returned by two subqueries

List the number of each employee in departments 2 or 4, plus employees who know about
administration:

 (SELECT empno FROM employee
 WHERE depno IN (2,4))
 UNION
 (SELECT empno FROM course,empcourse
 WHERE course.courseno = empcourse.courseno
 AND cname LIKE '%Administration%');

Views
• A view is a named query.

CREATE VIEW view_name [(column_list)]
 AS query;

Attributes can be renamed in column_list if required.

• Suppose a user needs to regularly manipulate details about employee, name, and current
position. It might be simpler to create a view limited to this information only, rather than
always extracting it from two tables:

12/08/02 18:16 CO22001 Database Systems

Page 32 Copyright © 2001 Napier University +44 141 455 2754

CREATE VIEW empjob AS
 SELECT employee.empno,surname,forenames,position
 FROM employee,jobhistory
 WHERE employee.empno = jobhistory.empno
 AND enddate IS NULL;

• A view can be accessed like any other table

List those currently in Programming type jobs:

 SELECT empno,surname,forenames
 FROM empjob
 WHERE position LIKE '%Program%';

• A view can (should) be dropped when no longer required:

 DROP VIEW view_name

• The use of a view may provide a simpler query format than using self-joins or subqueries

Name employees younger than Liza Brunell:

 CREATE VIEW liza AS
 SELECT dob FROM employee
 WHERE forenames = 'Liza'
 AND surname = 'Brunell';
 SELECT surname,forenames
 FROM employee,liza
 WHERE employee.dob > liza.dob;
 DROP VIEW liza;

View Manipulation
When is a view `materialised' or populated with rows of data?

• When it is defined or

• when it is accessed

If it is the former then subsequent inserts, deletes and updates would not be visible. If the latter
then changes will be seen.

Some systems allow you to chose when views are materialised, most do not and views are
materialised whenever they are accessed thus all changes can be seen.

VIEW update, insert and delete
Can we change views?

• Yes, provided the primary key of all the base tables which make up the view are present
in the view.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 33

Base Table - A Base Table - B
A# B#

View Definition

A# B#
View

• This view cannot be changed because we have no means of knowing which row of B to
modify

Base Table - A Base Table - B
A# B#

View Definition

A#
View

Other SQL Statements
• So far we have just looked at SELECT but we need to be able to do other operations as

follows:

• INSERT - which writes new rows into a database

• DELETE - which deletes rows from a database

• UPDATE - which changes values in existing rows

• We also need to be able to control access to out tables by other users (see the later
SECURITY lecture).

12/08/02 18:16 CO22001 Database Systems

Page 34 Copyright © 2001 Napier University +44 141 455 2754

• We may need to provide special views of tables to make queries easier to write. These
views can also be made available to other users so that they can easily see our data but
not change it in any way.

INSERT

INSERT INTO table_name
 [(column_list)] VALUES (value_list)

The column_list lists columns to be assigned values. It can be omitted if every column is to be
assigned a value. The value_list is a set of literal values giving the value for each column in
column_list or CREATE TABLE order.

 insert into course
 values (11,'Advanced Accounting',10-jan-2000);
 insert into course (courseno,cname)
 values(13,'Advanced Administration');

DELETE

 DELETE FROM table_name [WHERE condition];

the rows of table_name which satify the condition are deleted.

• Delete Examples:

DELETE FROM jobhistory -- remote current posts from jobhistory
WHERE enddate IS NULL;

DELETE FROM jobhistory -- Remove all posts from jobhistory,
; -- leaving an empty table

DROP jobhistory; -- Remove jobhistory table completely

UPDATE

UPDATE table_name
 SET column_name = expression,{column_name=expression}
 [WHERE condition]

The expression can be

• NULL

• a literal value

• an expression based upon the current column value

Give a salary rise of 10% to all accountants:

UPDATE jobhistory
 SET salary = salary * 1.10
 WHERE position LIKE '%Accountant%'

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 35

 AND enddate IS NULL;

12/08/02 18:16 CO22001 Database Systems

Page 36 Copyright © 2001 Napier University +44 141 455 2754

Unit 2.1 - Data Analysis

Unit 2.1: Database Analysis
This unit it concerned with the process of taking a database specification from a customer and
implementing the underlying database structure necessary to support that specification.

Entity Relationship Modelling
Data analysis is concerned with the NATURE and USE of data. It involves the identification of
the data elements which are needed to support the data processing system of the organization, the
placing of these elements into logical groups and the definition of the relationships between the
resulting groups.

Other approaches, e.g. D.F.Ds and Flowcharts, have been concerned with the flow of data -
dataflow methodologies. Data analysis is one of several data structure based methodologies -
Jackson SP/D is another.

Systems analysts often, in practice, go directly from fact finding to implementation dependent
data analysis. Their assumptions about the usage of properties of and relationships between data
elements are embodied directly in record and file designs and computer procedure specifications.
The introduction of Database Management Systems (DBMS) has encouraged a higher level of
analysis, where the data elements are defined by a logical model or `schema' (conceptual
schema). When discussing the schema in the context of a DBMS, the effects of alternative
designs on the efficiency or ease of implementation is considered, i.e. the analysis is still
somewhat implementation dependent. If we consider the data relationships, usages and
properties that are important to the business without regard to their representation in a particular
computerised system using particular software, we have what we are concerned with,
implementation-independent data analysis.

It is fair to ask why data analysis should be done if it is possible, in practice to go straight to a
computerised system design. Data analysis is time consuming; it throws up a lot of questions.
Implementation may be slowed down while the answers are sought. It is more expedient to have
an experienced analyst `get on with the job' and come up with a design straight away. The main
difference is that data analysis is more likely to result in a design which meets both present and
future requirements, being more easily adapted to changes in the business or in the computing
equipment. It can also be argued that it tends to ensure that policy questions concerning the
organisations' data are answered by the managers of the organisation, not by the systems
analysts. Data analysis may be thought of as the `slow and careful' approach, whereas omitting
this step is `quick and dirty'.

From another viewpoint, data analysis provides useful insights for general design principals
which will benefit the trainee analyst even if he finally settles for a `quick and dirty' solution.

The development of techniques of data analysis have helped to understand the structure and

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 37

meaning of data in organisations. Data analysis techniques can be used as the first step of
extrapolating the complexities of the real world into a model that can be held on a computer and
be accessed by many users. The data can be gathered by conventional methods such as
interviewing people in the organisation and studying documents. The facts can be represented as
objects of interest. There are a number of documentation tools available for data analysis, such as
entity-relationship diagrams. These are useful aids to communication, help to ensure that the
work is carried out in a thorough manner, and ease the mapping processes that follow data
analysis. Some of the documents can be used as source documents for the data dictionary.

In data analysis we analyse the data and build a systems representation in the form of a data
model (conceptual). A conceptual data model specifies the structure of the data and the processes
which use that data.

Data Analysis = establishing the nature of data.

Functional Analysis = establishing the use of data.

However, since Data and Functional Analysis are so intermixed, we shall use the term Data
Analysis to cover both.

Building a model of an organisation is not easy. The whole organisation is too large as there will
be too many things to be modelled. It takes too long and does not achieve anything concrete like
an information system, and managers want tangible results fairly quickly. It is therefore the task
of the data analyst to model a particular view of the organisation, one which proves reasonable
and accurate for most applications and uses. Data has an intrinsic structure of its own,
independent of processing, reports formats etc. The data model seeks to make explicit that
structure

Data analysis was described as establishing the nature and use of data.

Database Analysis Life Cycle

Database study

Testing and evaluation

maintenance and evolution

Database design

Operation

Implementation and loading

When a database designer is approaching the problem of constructing a database system, the
logical steps followed is that of the database analysis life cycle:

12/08/02 18:16 CO22001 Database Systems

Page 38 Copyright © 2001 Napier University +44 141 455 2754

• Database study - here the designer creates a written specification in words for the
database system to be built. This involves

• analysing the company situation - is it an expanding company, dynamic in its
requirements, mature in nature, solid background in employee training for new
internal products, etc. These have an impact on how the specification is to be
viewed.

• define problems and constraints - what is the situation currently? How does the
company deal with the task which the new database is to perform. Any issues
around the current method? What are the limits of the new system?

• define objectives - what is the new database system going to have to do, and in
what way must it be done. What information does the company want to store
specifically, and what does it want to calculate. How will the data evolve.

• define scope and boundaries - what is stored on this new database system, and
what it stored elsewhere. Will it interface to another database?

• Database Design - conceptual, logical, and physical design steps in taking specifications
to physical implementable designs. This is looked at more closely in a moment.

• Implementation and loading - it is quite possible that the database is to run on a machine
which as yet does not have a database management system running on it at the moment.
If this is the case one must be installed on that machine. Once a DBMS has been
installed, the database itself must be created within the DBMS. Finally, not all databases
start completely empty, and thus must be loaded with the initial data set (such as the
current inventory, current staff names, current customer details, etc).

• Testing and evaluation - the database, once implemented, must be tested against the
specification supplied by the client. It is also useful to test the database with the client
using mock data, as clients do not always have a full understanding of what they thing
they have specified and how it differs from what they have actually asked for! In
addition, this step in the life cycle offers the chance to the designer to fine-tune the
system for best performance. Finally, it is a good idea to evaluate the database in-situ,
along with any linked applications.

• Operation - this step is where the system is actually in real usage by the company.

• Maintenance and evolution - designers rarely get everything perfect first time, and it may
be the case that the company requests changes to fix problems with the system or to
recommend enhancements or new requirements.

• Commonly development takes place without change to the database structure. In elderly
systems the DB structure becomes fossilised.

Three-level Database Model

Often referred to as the three-level model, this is where the design moves from a written
specification taken from the real-world requirements to a physically-implementable design for a

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 39

specific DBMS. The three levels commonly referred to are `Conceptual Design', `Data Model
Mapping', and `Physical Design'.

Physical Design

Data Model Mapping

Mini-World View

Requirements Collection and
Analysis

Conceptual Design

The specification is usually in the form of a written document containing customer requirements,
mock reports, screen drawings and the like, written by the client to indicate the requirements
which the final system is to have. Often such data has to be collected together from a variety of
internal sources to the company and then analysed to see if the requirements are necessary,
correct, and efficient.

Once the Database requirements have been collated, the Conceptual Design phase takes the
requirements and produces a high-level data model of the database structure. In this module, we
use ER modelling to represent high-level data models, but there are other techniques. This model
is independent of the final DBMS which the database will be installed in.

Next, the Conceptual Design phase takes the high-level data model it taken and converted into a
conceptual schema, which is specific to a particular DBMS class (e.g. relational). For a relational
system, such as Oracle, an appropriate conceptual schema would be relations.

Finally, in the Physical Design phase the conceptual schema is converted into database internal
structures. This is specific to a particular DBMS product.

Entity Relationship Modelling
Entity Relationship (ER) modelling

• is a design tool

• is a graphical representation of the database system

• provides a high-level conceptual data model

• supports the user's perception of the data

• is DBMS and hardware independent

• had many variants

• is composed of entities, attributes, and relationships

12/08/02 18:16 CO22001 Database Systems

Page 40 Copyright © 2001 Napier University +44 141 455 2754

Entities
• An entity is any object in the system that we want to model and store information about

• Individual objects are called entities

• Groups of the same type of objects are called entity types or entity sets

• Entities are represented by rectangles (either with round or square corners)

Lecturer Lecturer

Chen's notation other notations

• There are two types of entities; weak and strong entity types.

Attribute
• All the data relating to an entity is held in its attributes.

• An attribute is a property of an entity.

• Each attribute can have any value from its domain.

• Each entity within an entity type:

• May have any number of attributes.

• Can have different attribute values than that in any other entity.

• Have the same number of attributes.

• Attributes can be

• simple or composite

• single-valued or multi-valued

• Attributes can be shown on ER models

• They appear inside ovals and are attached to their entity.

• Note that entity types can have a large number of attributes... If all are shown then
the diagrams would be confusing. Only show an attribute if it adds information to
the ER diagram, or clarifies a point.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 41

Lecturer
Name

Keys
• A key is a data item that allows us to uniquely identify individual occurrences or an

entity type.

• A candidate key is an attribute or set of attributes that uniquely identifies individual
occurrences or an entity type.

• An entity type may have one or more possible candidate keys, the one which is selected
is known as the primary key.

• A composite key is a candidate key that consists of two or more attributes

• The name of each primary key attribute is underlined.

Relationships
• A relationship type is a meaningful association between entity types

• A relationship is an association of entities where the association includes one entity from
each participating entity type.

• Relationship types are represented on the ER diagram by a series of lines.

• As always, there are many notations in use today...

• In the original Chen notation, the relationship is placed inside a diamond, e.g. managers
manage employees:

Manager manages Employee

• For this module, we will use an alternative notation, where the relationship is a label on
the line. The meaning is identical

Manager Employeemanages

Degree of a Relationship
• The number of participating entities in a relationship is known as the degree of the

relationship.

12/08/02 18:16 CO22001 Database Systems

Page 42 Copyright © 2001 Napier University +44 141 455 2754

• If there are two entity types involved it is a binary relationship type

Manager Employeemanages

• If there are three entity types involved it is a ternary relationship type

Customer

Sales
Assistant

sells Product

• It is possible to have a n-ary relationship (e.g. quaternary or unary).

• Unary relationships are also known as a recursive relationship.

Employee

manages

• It is a relationship where the same entity participates more than once in different roles.

• In the example above we are saying that employees are managed by employees.

• If we wanted more information about who manages whom, we could introduce a second
entity type called manager.

Degree of a Relationship
• It is also possible to have entities associated through two or more distinct relationships.

EmployeeDepartment
manages

employs

• In the representation we use it is not possible to have attributes as part of a relationship.
To support this other entity types need to be developed.

Replacing ternary relationships
When ternary relationships occurs in an ER model they should always be removed before
finishing the model. Sometimes the relationships can be replaced by a series of binary
relationships that link pairs of the original ternary relationship.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 43

Customer

Sales
Assistant

sells Product

assists buys

• This can result in the loss of some information - It is no longer clear which sales assistant
sold a customer a particular product.

• Try replacing the ternary relationship with an entity type and a set of binary relationships.

Relationships are usually verbs, so name the new entity type by the relationship verb rewritten as
a noun.

• The relationship sells can become the entity type sale.

Sales
Assistant

Customer

Sale Productinvolvesmakes

requests

• So a sales assistant can be linked to a specific customer and both of them to the sale of a
particular product.

• This process also works for higher order relationships.

Cardinality
• Relationships are rarely one-to-one

• For example, a manager usually manages more than one employee

• This is described by the cardinality of the relationship, for which there are four possible
categories.

• One to one (1:1) relationship

• One to many (1:m) relationship

• Many to one (m:1) relationship

• Many to many (m:n) relationship

• On an ER diagram, if the end of a relationship is straight, it represents 1, while a "crow's
foot" end represents many.

• A one to one relationship - a man can only marry one woman, and a woman can only
marry one man, so it is a one to one (1:1) relationship

12/08/02 18:16 CO22001 Database Systems

Page 44 Copyright © 2001 Napier University +44 141 455 2754

Man Woman
1 is married to 1

• A one to may relationship - one manager manages many employees, but each employee
only has one manager, so it is a one to many (1:n) relationship

Manager Employeemanages m1

• A many to one relationship - many students study one course. They do not study more
than one course, so it is a many to one (m:1) relationship

Student Coursestudies 1m

• A many to many relationship - One lecturer teaches many students and a student is taught
by many lecturers, so it is a many to many (m:n) relationship

Lecturer Studentteachesm n

Optionality
A relationship can be option or mandatory.

• If the relationship is mandatory

• an entity at one end of the relationship must be related to an entity at the other
end.

• The optionality can be different at each end of the relationship

• For example, a student must be on a course. This is mandatory. To the
relationship `student studies course' is mandatory.

• But a course can exist before any students have enrolled. Thus the relationship
`course is_studied_by student' is optional.

• To show optionality, put a circle or `0' at the `optional end' of the relationship.

• As the optional relationship is `course is_studied_by student', and the optional part of this
is the student, then the `O' goes at the student end of the relationship connection.

Course Studentis studied by
0

• It is important to know the optionality because you must ensure that whenever you create
a new entity it has the required mandatory links.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 45

Entity Sets
Sometimes it is useful to try out various examples of entities from an ER model. One reason for
this is to confirm the correct cardinality and optionality of a relationship. We use an `entity set
diagram' to show entity examples graphically. Consider the example of `course is_studied_by
student'.

BSc Comp
MSc Biology
BA Fine Art
BSc Maths

Sarah
Andy
Jim

Anne

Paul
Jenny

Examples of the
"Student" entitiesExamples of the

"Course" entities
the "is_studied_by"

relationship

Confirming Correctness

BSc Comp
MSc Biology
BA Fine Art
BSc Maths

Sarah
Andy
Jim

Anne

Paul
Jenny

Examples of the
"Student" entitiesExamples of the

"Course" entities
the "is_studied_by"

relationship

• Use the diagram to show all possible relationship scenarios.

• Go back to the requirements specification and check to see if they are allowed.

• If not, then put a cross through the forbidden relationships

• This allows you to show the cardinality and optionality of the relationship

Deriving the relationship parameters
To check we have the correct parameters (sometimes also known as the degree) of a relationship,
ask two questions:

One course is studied by how many students? Answer = `zero or more'.

• This gives us the degree at the `student' end.

• The answer `zero or more' needs to be split into two parts.

• The `more' part means that the cardinality is `many'.

12/08/02 18:16 CO22001 Database Systems

Page 46 Copyright © 2001 Napier University +44 141 455 2754

• The `zero' part means that the relationship is `optional'.

• If the answer was `one or more', then the relationship would be `mandatory'.

2. One student studies how many courses? Answer = `One'

• This gives us the degree at the `course' end of the relationship.

• The answer `one' means that the cardinality of this relationship is 1, and is
`mandatory'

• If the answer had been `zero or one', then the cardinality of the relationship would
have been 1, and be `optional'.

Redundant relationships
Some ER diagrams end up with a relationship loop.

• check to see if it is possible to break the loop without losing info

• Given three entities A, B, C, where there are relations A-B, B-C, and C-A, check if it is
possible to navigate between A and C via B. If it is possible, then A-C was a redundant
relationship.

• Always check carefully for ways to simplify your ER diagram. It makes it easier to read
the remaining information.

Redundant relationships example
• Consider entities `customer' (customer details), `address' (the address of a customer) and

`distance' (distance from the company to the customer address).

Customer

Distance

Address

far from workfar from work

is living at

Splitting n:m Relationships
A many to many relationship in an ER model is not necessarily incorrect. They can be replaced
using an intermediate entity. This should only be done where:

• the m:n relationship hides an entity

• the resulting ER diagram is easier to understand.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 47

Splitting n:m Relationships - Example
Consider the case of a car hire company. Customers hire cars, one customer hires many card and
a car is hired by many customers.

m nhire CarCustomer

The many to many relationship can be broken down to reveal a `hire' entity, which contains an
attribute `date of hire'.

CarCustomer
m n

Hire

Constructing an ER model - Entities
Before beginning to draw the ER model, read the requirements specification carefully.
Document any assumptions you need to make.

1. Identify entities - list all potential entity types. These are the object of interest in the
system. It is better to put too many entities in at this stage and them discard them later if
necessary.

2. Remove duplicate entities - Ensure that they really separate entity types or just two
names for the same thing.

• Also do not include the system as an entity type

• e.g. if modelling a library, the entity types might be books, borrowers, etc.

• The library is the system, thus should not be an entity type.

Constructing an ER model - Attributes
3. List the attributes of each entity (all properties to describe the entity which are relevant to

the application).

• Ensure that the entity types are really needed.

• are any of them just attributes of another entity type?

• if so keep them as attributes and cross them off the entity list.

• Do not have attributes of one entity as attributes of another entity!

4. Mark the primary keys.

• Which attributes uniquely identify instances of that entity type?

• This may not be possible for some weak entities.

12/08/02 18:16 CO22001 Database Systems

Page 48 Copyright © 2001 Napier University +44 141 455 2754

Constructing an ER model - Relationships
5. Define the relationships

• Examine each entity type to see its relationship to the others.

6. Describe the cardinality and optionality of the relationships

• Examine the constraints between participating entities.

7. Remove redundant relationships

• Examine the ER model for redundant relationships.

ER modelling is an iterative process, so draw several versions, refining each one until you are
happy with it. Note that there is no one right answer to the problem, but some solutions are better
than others!

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 49

Unit 2.2 - ER Modelling 2

Unit 2.2 - Entity Relationship Modelling - 2
Overview

• construct an ER model

• understand the problems associated with ER models

• understand the modelling concepts of Enhanced ER modelling

Country Bus Company
A Country Bus Company owns a number of busses. Each bus is allocated to a particular route,
although some routes may have several busses. Each route passes through a number of towns.
One or more drivers are allocated to each stage of a route, which corresponds to a journey
through some or all of the towns on a route. Some of the towns have a garage where busses are
kept and each of the busses are identified by the registration number and can carry different
numbers of passengers, since the vehicles vary in size and can be single or double-decked. Each
route is identified by a route number and information is available on the average number of
passengers carried per day for each route. Drivers have an employee number, name, address, and
sometimes a telephone number.

Entities
• Bus - Company owns busses and will hold information about them.

• Route - Buses travel on routes and will need described.

• Town - Buses pass through towns and need to know about them

• Driver - Company employs drivers, personnel will hold their data.

• Stage - Routes are made up of stages

• Garage - Garage houses buses, and need to know where they are.

Relationships
• A bus is allocated to a route and a route may have several buses.

• Bus-route (m:1) is serviced by

• A route comprises of one or more stages.

12/08/02 18:16 CO22001 Database Systems

Page 50 Copyright © 2001 Napier University +44 141 455 2754

• route-stage (1:m) comprises

• One or more drivers are allocated to each stage.

• driver-stage (m:1) is allocated

• A stage passes through some or all of the towns on a route.

• stage-town (m:n) passes-through

• A route passes through some or all of the towns

• route-town (m:n) passes-through

• Some of the towns have a garage

• garage-town (1:1) is situated

• A garage keeps buses and each bus has one `home' garage

• garage-bus (m:1) is garaged

Draw E-R Diagram

is serviced by
RouteBus

Town

Garage
Stage

Driveris allocated

m
n

m

m

n
n

has

passed throughis situated in

is garaged

Attributes
• Bus (reg-no,make,size,deck,no-pass)

• Route (route-no,avg-pass)

• Driver (emp-no,name,address,tel-no)

• Town (name)

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 51

• Stage (stage-no)

• Garage (name,address)

Problems with ER Models
There are several problems that may arise when designing a conceptual data model. These are
known as connection traps.

12/08/02 18:16 CO22001 Database Systems

Page 52 Copyright © 2001 Napier University +44 141 455 2754

There are two main types of connection traps:

1. fan traps

2. chasm traps

Fan traps
A fan trap occurs when a model represents a relationship between entity types, but the pathway
between certain entity occurrences is ambiguous. It occurs when 1:m relationships fan out from a
single entity.

Department is on Site employ Staff
mn

A single site contains many departments and employs many staff. However, which staff work in
a particular department?

The fan trap is resolved by restructuring the original ER model to represent the correct
association.

n
SiteDepartmentStaff

m
works for is on

Chasm traps
A chasm trap occurs when a model suggests the existence of a relationship between entity types,
but the pathway does not exist between certain entity occurrences.

It occurs where there is a relationship with partial participation, which forms part of the pathway
between entities that are related.

Branch Staff
oversees

Property
is_allocated

n 00

• A single branch is allocated many staff who oversee the management of properties for
rent. Not all staff oversee property and not all property is managed by a member of staff.

• What properties are available at a branch?

• The partial participation of Staff and Property in the oversees relation means that some
properties cannot be associated with a branch office through a member of staff.

• We need to add the missing relationship which is called `has' between the Branch and the
Property entities.

• You need to therefore be careful when you remove relationships which you consider to
be redundant.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 53

Branch

Staff

Property

is_allocated oversees

has

0
0n

Enhanced ER Models (EER)
The basic concepts of ER modelling is not powerful enough for some complex applications... We
require some additional semantic modelling concepts:

• Specialisation

• Generalisation

• Categorisation

• Aggregation

First we need some new entity constructs.

• Superclass - an entity type that includes distinct subclasses that require to be represented
in a data model.

• Subclass - an entity type that has a distinct role and is also a member of a superclass.

Staff

Manager Secretary

Sales
Personnel

Subclasses need not be mutually exclusive; a member of staff may be a manager and a sales
person.

The purpose of introducing superclasses and subclasses is to avoid describing types of staff with
possibly different attributes within a single entity. This could waste space and you might want to
make some attributes mandatory for some types of staff but other staff would not need these
attributes at all.

Specialisation
This is the process of maximising the differences between members of an entity by identifying
their distinguishing characteristics.

• Staff(staff_no,name,address,dob)

12/08/02 18:16 CO22001 Database Systems

Page 54 Copyright © 2001 Napier University +44 141 455 2754

• Manager(bonus)

• Secretary(wp_skills)

• Sales_personnel(sales_area, car_allowance)

Staff

Manager Secretary

Sales
Personnel

Department

works for

manages

• Here we have shown that the manages relationship is only applicable to the Manager
subclass, whereas the works_for relationship is applicable to all staff.

• It is possible to have subclasses of subclasses.

Generalisation
Generalisation is the process of minimising the differences between entities by identifying
common features.

This is the identification of a generalised superclass from the original subclasses. This is the
process of identifying the common attributes and relationships.

Unit 2.3 - Mapping ER Models into Relations

Unit 2.3 - Mapping ER Models into Relations
Overview

• map 1:1 relationships into relations

• map 1:m relationships into relations

• map m:n relationships into relations

• differences between mapping optional and mandatory relationships.

What is a relation?
A relation is a table that holds the data we are interested in. It is two-dimensional and has rows
and columns.

Each entity type in the ER model is mapped into a relation.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 55

• The attributes become the columns.

• The individual entities become the rows.

Student

name

address

matric_no

DoB

name address matric_no DoB
John Smith Scotland

JapanPaul James
0987654 12/12/99
1234567 1/2/33

Relations can be represented textually as:

 tablename(primary key, attribute 1, attribute 2, ... , foreign key)

If matric_no was the primary key, and there were no foreign keys, then the table above could be
represented as:

 student(matric no, name, address, date_of_birth)

When referring to relations or tables, cardinality is considered to the the
number of rows in the relation or table, and arity is the number of columns
in a table or attributes in a relation.

Foreign keys
A foreign key is an attribute (or group of attributes) that is the primary key to another relation.

• Roughly, each foreign key represents a relationship between two entity types.

• They are added to relations as we go through the mapping process.

• They allow the relations to be linked together.

• A relation can have several foreign keys.

• It will generally have a foreign key from each table that it is related to.

• Foreign keys are usually shown in italics or with a wiggly underline.

Preparing to map the ER model
Before we start the actual mapping process we need to be certain that we have simplified the ER
model as much as possible.

This is the ideal time to check the model, as it is really the last chance to make changes to the ER
model without causing major complications.

12/08/02 18:16 CO22001 Database Systems

Page 56 Copyright © 2001 Napier University +44 141 455 2754

Mapping 1:1 relationships
Before tackling a 1:1 relationship, we need to know its optionality.

There are three possibilities the relationship can be:

1. mandatory at both ends

2. mandatory at one end and optional at the other

3. optional at both ends

Mandatory at both ends
If the relationship is mandatory at both ends it is often possible to subsume one entity type into
the other.

• The choice of which entity type subsumes the other depends on which is the most
important entity type (more attributes, better key, semantic nature of them).

• The result of this amalgamation is that all the attributes of the `swallowed up' entity
become attributes of the more important entity.

• The key of the subsumed entity type becomes a normal attribute.

• If there are any attributes in common, the duplicates are removed.

• The primary key of the new combined entity is usually the same as that of the original
more important entity type.

When not to combine
There are a few reason why you might not combine a 1:1 mandatory relationship.

• the two entity types represent different entities in the `real world'.

• the entities participate in very different relationships with other entities.

• efficiency considerations when fast responses are required or different patterns of
updating occur to the two different entity types.

If not combined...
If the two entity types are kept separate then the association between them must be represented
by a foreign key.

• The primary key of one entity type comes the foreign key in the other.

• It does not matter which way around it id done but you should not have a foreign key in
each entity.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 57

Example
• Two entity types; staff and contract.

• Each member of staff must have one contract and each contract must have one
member of staff associated with it.

• It is therefore a mandatory relations at both ends.

Staff Contract

emp_no

name
has

start end

position

salary

cont_no

• These to entity types could be amalgamated into one.

 Staff(emp_no, name, cont_no, start, end, position, salary)

• or kept apart and a foreign key used

 Staff(emp_no, name, contract_no)
 Contract(cont_no, start, end, position, salary)

• or

 Staff(emp_no, name)
 Contract(cont_no, start, end, position, salary, emp_no)

Mandatory Optional
The entity type of the optional end may be subsumed into the mandatory end as in the previous
example.

It is better NOT to subsume the mandatory end into the optional end as this will create null
entries.

Staff Contract

emp_no

name
has

start end

position

salary

cont_no

0

If we add to the specification that each staff member may have at most one contract (thus making
the relation optional at one end).

• Map the foreign key into Staff - the key is null for staff without a contract.

 Staff(emp_no, name, contract_no)
 Contract(cont_no, start, end, position, salary)

• Map the foreign key into Contract - emp_no is mandatory thus never null.

12/08/02 18:16 CO22001 Database Systems

Page 58 Copyright © 2001 Napier University +44 141 455 2754

 Staff(emp_no, name)
 Contract(cont_no, start, end, position, salary, emp_no)

Example

Consider this example:

• Staff “Gordon”, empno 10, contract no 11.
• Staff “Andrew”, empno 11, no contract.
• Contract 11, from 1st Jan 2001 to 10th Jan 2001, lecturer, on £2.00 a year.

Foreign key in Staff:

 Contract Table:
Cont_no Start End Position Salary
11 1st Jan 2001 10th Jan 2001 Lecturer £2.00

 Staff Table:
Empno Name Contract No
10 Gordon 11
11 Andrew NULL

However, Foreign key in Contract:

 Contract Table:
Cont_no Start End Position Salary Empno
11 1st Jan 2001 10th Jan 2001 Lecturer £2.00 10

 Staff Table:
Empno Name
10 Gordon
11 Andrew

As you can see, both ways store the same information, but the second way has
no NULLs.

Mandatory Optional - Subsume?
The reasons for not subsuming are the same as before with the following additional reason.

• very few of the entities from the mandatory end are involved in the relationship. This
could cause a lot of wasted space with many blank or null entries.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 59

0

lect no

l name
Lecturer manages Course

cno cname type

yr_vetted

enternal

• If only a few lecturers manage courses and Course is subsumed into Lecturer then there
would be many null entries in the table.

 Lecturer(lect_no, l_name, cno, c_name, type, yr_vetted, external)

• It would be better to keep them separate.

 Lecturer(lect_no, l_name)
 Course(cno, c_name, type, yr_vetted, external,lect_no)

Summary...
So for 1:1 optional relationships, take the primary key from the `mandatory end' and add it to the
`optional end' as a foreign key.

So, given entity types A and B, where A B is a relationship where the A end it optional, the
result would be:

 A (primary key,attribute,...,foreign key to B)
 B (primary key,attribute,...)

Optional at both ends...
Such examples cannot be amalgamated as you could not select a primary key. Instead, one
foreign key is used as before.

0

emp_no

name
Staff leases Car

reg_no year make

type

colour0

• Each staff member may lease up to one car

• Each car may be leased by at most one member of staff

• If these were combined together...

 Staff_car(emp_no, name, reg_no, year, make, type, colour)

what would be the primary key?

• If emp_no is used then all the cars which are not being leased will not have a key.

• Similarly, if the reg_no is used, all the staff not leasing a car will not have a key.

12/08/02 18:16 CO22001 Database Systems

Page 60 Copyright © 2001 Napier University +44 141 455 2754

• A compound key will not work either.

Mapping 1:m relationships
To map 1:m relationships, the primary key on the `one side' of the relationship is added to the
`many side' as a foreign key.

For example, the 1:m relationship `course-student':

Course
matriculate

Student

• Assuming that the entity types have the following attributes:

 Course(course_no, c_name)
 Student(matric_no, st_name, dob)

• Then after mapping, the following relations are produced:

 Course(course_no, c_name)
 Student(matric_no, st_name, dob, course_no)

• If an entity type participates in several 1:m relationships, then you apply the rule to each
relationship, and add foreign keys as appropriate.

Mapping n:m relationships
If you have some m:n relationships in your ER model then these are mapped in the following
manner.

• A new relation is produced which contains the primary keys from both sides of the
relationship

• These primary keys form a composite primary key.

Student
studies on

Module

• Thus

 Student(matric_no, st_name, dob)
 Module(module_no, m_name, level, credits)

• becomes

 Student(matric_no, st_name, dob)
 Module(module_no, m_name, level, credits)
 Studies(matric_no,module_no)

This is equivalent to:

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 61

Student ModuleStudy

 Student(matric_no,st_name,dob)
 Module(module_no,m_name,level,credits)
 Study()

Summary
• 1-1 relationships

Depending on the optionality of the relationship, the entities are either combined or the
primary key of one entity type is placed as a foreign key in the other relation.

• 1-m relationships
The primary key from the `one side' is placed as a foreign key in the `many side'.

• m-n relationships
A new relation is created with the primary keys from each entity forming a composite
key.

Unit 2.4 - Advanced ER Mapping

Unit 2.4 - Advanced ER Mapping
Overview

• map parallel relationships into relations

• map unary relationships into relations

• map superclasses and subclasses into relations

Mapping parallel relationships
Parallel relationships occur when there are two or more relationships between two entity types
(e.g. employees own and service cars).

Employee Vehicleservices

owns
0 0

0

• In order to distinguish between the two roles we can give the foreign keys different
names.

• Each relationship is mapped according to the rules, and we end up with two foreign keys

12/08/02 18:16 CO22001 Database Systems

Page 62 Copyright © 2001 Napier University +44 141 455 2754

added to the Vehicle table.

• So we add the employee_no as the owner_no in order to represent the `owns' relationship.

• We then add the employee_no as the serviced_by attribute in order to represent the
`services' relationship.

• Before mapping

 Employee(employee_no,...)
 Vehicle(registration_no,...)

• After mapping

 Employee(employee_no,...)
 Vehicle(registration_no,owner_no,serviced_by,...)

Mapping 1:m in unary relationships

Employee

manages0

0

• Employees manage employees

• Each employee has an employee_no with is the primary key

• We represent the manages relationship by adding a manager_no as a foreign key.

• This is in fact the employee_no of the manager.

• It is given a different name to clearly convey what it represents, and to ensure that all the
entity type's attributes have unique names, as to do otherwise would be invalid.

• After mapping

 Employee(employee_no,manager_no, name,...)

• So in general, for unary 1:n relationships, the foreign key is the primary key of the same
table, but is given a different name.

• Note that the relationship is optional in both directions because not all staff can be
managers, and the top manager is not managed by anybody else.

Mapping superclasses and subclasses
There are three ways of implementing superclasses and subclasses and it depends on the
application which will be the most suitable.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 63

Only the first method is a true reflection of the superclasses and subclasses and if either of the
other methods is preferential then the model should not have subclasses.

1. One relation for the superclass and one relation for each subclass.

2. One relation for each subclass.

3. One relation for the superclass.

Example

Staff

Manager Secretary

Sales
Personnel

 Staff(staff_no,name,address,dob)
 Manager(bonus)
 Secretary(wp_skills)
 Sales_personnel(sales_area, car_allowance)

One relation for the superclass and one relation for each subclass:

 Staff(staff_no,name,address,dob)
 Manager(staff_no,bonus)
 Secretary(staff_no,wp_skills)
 Sales_personnel(staff_no,sales_area, car_allowance)

The primary key of the superclass is mapped into each subclass and becomes the subclasses
primary key. This represents most closely the EER model. However is can cause efficiency
problems as there needs to be a lot of joins if the additional information is often needed for all
staff.

One relation for each subclass:

 Manager(staff_no,name,address,dob,bonus)
 Secretary(staff_no,name,address,dob,wp_skills)
 Sales_personnel(staff_no,name,address,dob,sales_area, car_allowance)

All attributes are mapped into each subclass. It is equivalent to having three separate entity types
and no superclass.

It is useful if there are no overlapping and there are no relationships between the superclass and
other entity types. It is poor if the subclasses are not disjoint as there is data duplication in each
relation which can cause problems with consistency.

12/08/02 18:16 CO22001 Database Systems

Page 64 Copyright © 2001 Napier University +44 141 455 2754

One relation for the superclass:

 Staff(staff_no,name,address,dob, bonus, wp_skills, sales_area,
car_allowance)

This represents a single entity type with no subclasses.

This is no good if the subclasses are not disjoint or if there are relationships between the
subclasses and the other entities.

In addition, there will be many null fields if the subclasses do not overlap a lot. However, it
avoids any joins to get additional information about each member of staff.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 65

Unit 3.1 - Normalisation 1

Unit 3.1 - Normalisation
What is normalisation?
Normalisation is the process of taking data from a problem and reducing it to a set of relations
while ensuring data integrity and eliminating data redundancy

• Data integrity - all of the data in the database are consistent, and satisfies all integrity
constraints.

• Data redundancy – if data in the database can be found in two different locations (direct
redundancy) or if data can be calculated from other data items (indirect redundancy) then
the data is said to contain redundancy.

Data should only be stored once and avoid storing data that can be calculated from other data
already held in the database. During the process or normalisation redundancy must be removed,
but not at the expense of breaking data integrity rules.

If redundancy exists in the database then problems can arise when the database is in normal
operation:

• When data is inserted the data must be duplicated correctly in all places where there is
redundancy. For instance, if two tables exist for in a database, and both tables contain the
employee name, then creating a new employee entry requires that both tables be updated
with the employee name.

• When data is modified in the database, if the data being changed has redundancy, then all
versions of the redundant data must be updated simultaneously. So in the employee
example a change to the employee name must happen in both tables simultaneously.

The removal of redundancy helps to prevent insertion and update errors, since the data is only
available in one attribute of one table in the database.

The data in the database can be considered to be in one of a number of `normal forms'. Basically
the normal form of the data indicates how much redundancy is in that data. The normal forms
have a strict ordering:

1. 1st Normal Form

2. 2nd Normal Form

3. 3rd Normal Form

4. BCNF

12/08/02 18:16 CO22001 Database Systems

Page 66 Copyright © 2001 Napier University +44 141 455 2754

5. 4th Normal Form

6. 5th Normal Form

To be in a particular form requires that the data meets the criteria to also be in all normal
forms before that form. Thus to be in 2nd normal form the data must meet the criteria for
both 2nd normal form and 1st normal form. The higher the form the more redundancy has
been eliminated.

Integrity Constraints
An integrity constraint is a rule that restricts the values that may be present in the database The
relational data model includes constraints that are used to verify the validity of the data as well as
adding meaningful structure to it:

• entity integrity :

The rows (or tuples) in a relation represent entities, and each one must be uniquely
identified. Hence we have the primary key that must have a unique non-null value for
each row.

• referential integrity :

This constraint involves the foreign keys. Foreign keys tie the relations together, so it is
vitally important that the links are correct. Every foreign key must either be null or its
value must be the actual value of a key in another relation.

Understanding Data
Sometimes the starting point for understanding data is given in the form of relations and
functional dependancies. This would be the case where the starting point in the process was a
detailed specification of the problem. We already know what relations are. Functional
dependancies are rules stating that given a certain set of attributes (the determinant) determines a
second set of attributes. Consider this example:

R(matric_no, firstname, surname, tutor_number, tutor_name)

tutor_number -> tutor_name

Here there is a relation R, and a functional dependency that indicates that:

• instances of tutor_number are unique in the data

• from the data, given a tutor_number, it is always possible to work out the tutor_name.

There is actually a second functional dependency for this relation, which can be worked out from
the relation itself. As the relation has a primary key, then given this attribute you can determine
all the other attributes in R. This is an implied functional dependency and is not normally listed

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 67

in the list of functional dependents.

Extracting understanding

It is possible that the relations and the determinants have not yet been defined for a problem,
and therefore must be calculated from examples of the data. Consider the following Student
table.

Student - an unnormalised table with repeating groups

matric_no Name date_of_birth subject grade

960100 Smith, J 14/11/1977
Databases
Soft_Dev
ISDE

C
A
D

960105 White, A 10/05/1975 Soft_Dev
ISDE

B
B

960120 Moore, T 11/03/1970
Databases
Soft_Dev
Workshop

A
B
C

960145 Smith, J 09/01/1972 Databases B

960150 Black, D 21/08/1973
Databases
Soft_Dev
ISDE
Workshop

B
D
C
D

The subject/grade pair is repeated for each student. 960145 has 1 pair while 960150 has four.
Repeating groups are placed inside another set of parenthesizes. From the table the following
relation is generated:

 Student(matric_no, name, date_of_birth, (subject, grade))

The repeating group needs a key in order that the relation can be correctly defined. Looking at
the data one can see that grade repeats within matric_no (for instance, for 960150, the student
has 2 D grades). However, subject never seems to repeat for a single matric_no, and therefore is
a candidate key in the repeating group.

Whenever keys or dependencies are extracted from example data, the information extracted is
only as good as the data sample examined. It could be that another data sample disproves some
of the key selections made or dependencies extracted. What is important however is that the
information extracted during these exercises is correct for the data being examined.

Looking at the data itself, we can see that the same name appears more than once in the name
column. The name in conjunction with the date_of_birth seems to be unique, suggesting a
functional dependency of:

12/08/02 18:16 CO22001 Database Systems

Page 68 Copyright © 2001 Napier University +44 141 455 2754

 name, date_of_birth -> matric_no

This implies that not only is the matric_no sufficient to uniquely identify a student, the student’s
name combined with the date of birth is also sufficient to uniquely identify a student. It is
therefore possible to have the relation Student written as:

 Student(matric_no, name, date_of_birth, (subject, grade))

As guidance in cases where a variety of keys could be selected one should try to select the
relation with the least number of attributes defined as primary keys.

Flattened Tables
Note that the student table shown above explicitly identifies the repeating group. It is also
possible that the table presented will be what is called a flat table, where the repeating group is
not explicitly shown:

Student #2 - Flattened Table

matric_no name date_of_birth Subject grade

960100 Smith, J 14/11/1977 Databases C

960100 Smith, J 14/11/1977 Soft_Dev A

960100 Smith, J 14/11/1977 ISDE D

960105 White, A 10/05/1975 Soft_Dev B

960105 White, A 10/05/1975 ISDE B

960120 Moore, T 11/03/1970 Databases A

960120 Moore, T 11/03/1970 Soft_Dev B

960120 Moore, T 11/03/1970 Workshop C

960145 Smith, J 09/01/1972 Databases B

960150 Black, D 21/08/1973 Databases B

960150 Black, D 21/08/1973 Soft_Dev D

960150 Black, D 21/08/1973 ISDE C

960150 Black, D 21/08/1973 Workshop B

The table still shows the same data as the previous example, but the format is different. We have

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 69

removed the repeating group (which is good) but we have introduced redundancy (which is bad).

Sometimes you will miss spotting the repeating group, so you may produce something like the
following relation for the Student data.

 Student(matric_no, name, date_of_birth, subject, grade)

 matric_no -> name, date_of_birth
 name, date_of_birth -> matric_no

This data does not explicitly identify the repeating group, but as you will see the result of the
normalisation process on this relation produces exactly the same relations as the normalisation of
the version that explicitly does have a repeating group.

First Normal Form
• First normal form (1NF) deals with the `shape' of the record type

• A relation is in 1NF if, and only if, it contains no repeating attributes or groups of
attributes.

• Example:

• The Student table with the repeating group is not in 1NF

• It has repeating groups, and it is called an `unnormalised table'.

Relational databases require that each row only has a single value per attribute, and so a
repeating group in a row is not allowed.

To remove the repeating group, one of two things can be done:

• either flatten the table and extend the key, or

• decompose the relation- leading to First Normal Form

Flatten table and Extend Primary Key
The Student table with the repeating group can be written as:

Student(matric_no, name, date_of_birth, (subject, grade))

If the repeating group was flattened, as in the Student #2 data table, it would look something
like:

Student(matric_no, name, date_of_birth, subject, grade)

Although this is an improvement, we still have a problem. matric_no can no longer be the
primary key - it does not have an unique value for each row. So we have to find a new primary
key - in this case it has to be a compound key since no single attribute can uniquely identify a
row. The new primary key is a compound key (matrix_no + subject).

12/08/02 18:16 CO22001 Database Systems

Page 70 Copyright © 2001 Napier University +44 141 455 2754

We have now solved the repeating groups problem, but we have created other complications.
Every repetition of the matric_no, name, and data_of_birth is redundant and liable to produce
errors.

With the relation in its flattened form, strange anomalies appear in the system. Redundant data is
the main cause of insertion, deletion, and updating anomalies.

• Insertion anomaly:

With the primary key including subject, we cannot enter a new student until they
have at least one subject to study. We are not allowed NULLs in the primary key so we
must have an entry in both matric_no and subject before we can create a new record.

• This is known as the insertion anomaly. It is difficult to insert new records into the
database.

• On a practical level, it also means that it is difficult to keep the data up to date.

• Update anomaly

• If the name of a student were changed

• for example Smith, J. was changed to Green, J.

• this would require not one change but many

• one for every subject that Smith, J. studied.

• Deletion anomaly

If all of the records for the `Databases' subject were deleted from the table,we would
inadvertently lose all of the information on the student with matric_no 960145.

o This would be the same for any student who was studying only one subject and the
subject was deleted.

o Again this problem arises from the need to have a compound primary key.

Decomposing the relation
• The alternative approach is to split the table into two parts, one for the repeating groups

and one of the non-repeating groups.

• the primary key for the original relation is included in both of the new relations

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 71

Record

matric_no subject grade

960100 Databases C

960100 Soft_Dev A

960100 ISDE D

960105 Soft_Dev B

960105 ISDE B

...

960150 Workshop B

Student

matric_no name date_of_birth

960100 Smith,J 14/11/1977

960105 White,A 10/05/1975

960120 Moore,T 11/03/1970

960145 Smith,J 09/01/1972

960150 Black,D 21/08/1973

• We now have two relations, Student and Record.

• Student contains the original non-repeating groups

• Record has the original repeating groups and the matric_no

Student(matric_no, name, date_of_birth)
Record(matric_no, subject, grade)

Matric_no remains the key to the Student relation. It cannot be the complete key to the new
Record relation - we end up with a compound primary key consisting of matric_no and subject.
The matric_no is the link between the two tables - it will allow us to find out which subjects a
student is studying . So in the Record relation, matric_no is the foreign key.

12/08/02 18:16 CO22001 Database Systems

Page 72 Copyright © 2001 Napier University +44 141 455 2754

This method has eliminated some of the anomalies. It does not always do so, it depends on the
example chosen

• In this case we no longer have the insertion anomaly

• It is now possible to enter new students without knowing the subjects that they
will be studying

• They will exist only in the Student table, and will not be entered in the Record
table until they are studying at least one subject.

• We have also removed the deletion anomaly

• If all of the `databases' subject records are removed, student 960145 still exists in
the Student table.

• We have also removed the update anomaly

Student and Record are now in First Normal Form.

Second Normal Form
Second normal form (or 2NF) is a more stringent normal form defined as:

A relation is in 2NF if, and only if, it is in 1NF and every non-key attribute is fully
functionally dependent on the whole key.

Thus the relation is in 1NF with no repeating groups, and all non-key attributes must
depend on the whole key, not just some part of it. Another way of saying this is that there
must be no partial key dependencies (PKDs).

The problems arise when there is a compound key, e.g. the key to the Record relation -
matric_no, subject. In this case it is possible for non-key attributes to depend on only part of the
key - i.e. on only one of the two key attributes. This is what 2NF tries to prevent.

Consider again the Student relation from the flattened Student #2 table:
 Student(matric_no, name, date_of_birth, subject, grade)

• There are no repeating groups

• The relation is already in 1NF

• However, we have a compound primary key - so we must check all of the non-key
attributes against each part of the key to ensure they are functionally dependent on it.

• matric_no determines name and date_of_birth, but not grade.

• subject together with matric_no determines grade, but not name or date_of_birth.

• So there is a problem with potential redundancies

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 73

A dependency diagram is used to show how non-key attributes relate to each part or
combination of parts in the primary key.

• This relation is not in 2NF

• It appears to be two tables squashed into one.

• the solutions is to split the relation up into its component parts.

• separate out all the attributes that are solely dependent on matric_no

• put them in a new Student_details relation, with matric_no as the primary key

• separate out all the attributes that are solely dependent on subject.

• in this case no attributes are solely dependent on subject.

• separate out all the attributes that are solely dependent on matric_no + subject

• put them into a separate Student relation, keyed on matric_no + subject

matric_no grade subject date_of_bith name

Student

PKD

PKD

12/08/02 18:16 CO22001 Database Systems

Page 74 Copyright © 2001 Napier University +44 141 455 2754

All attributes in each relation are fully functionally
dependent upon its primary key

These relations are now in 2NF

Interestingly this is the same set of relations as when we recognized that there were repeating
terms in the table and directly removed the repeating terms. It should not really matter what
process you followed when normalizing, as the end result should be similar relations.

Third Normal Form
3NF is an even stricter normal form and removes virtually all the redundant data :

• A relation is in 3NF if, and only if, it is in 2NF and there are no transitive functional
dependencies

• Transitive functional dependencies arise:

• when one non-key attribute is functionally dependent on another non-key
attribute:

• FD: non-key attribute -> non-key attribute

• and when there is redundancy in the database

By definition transitive functional dependency can only occur if there is more than one non-key
field, so we can say that a relation in 2NF with zero or one non-key field must automatically be
in 3NF.

Student Details

matrix_no name date_of_birth

Student

matrix_no subject grade

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 75

project_no manager address

p1 Black,B 32 High Street

p2 Smith,J 11 New Street

p3 Black,B 32 High Street

p4 Black,B 32 High Street

 Project has more than one non-key field so we
must check for transitive dependency:

• address depends on the value in the manager column

• every time B Black is listed in the manager column, the address column has the value `32
High Street'. From this the relation and functional dependency can be implied as:

Project(project_no, manager, address)

 manager -> address

• in this case address is transitively dependent on manager. Manager is the determinant - it
determines the value of address. It is transitive functional dependency only if all
attributes on the left of the “->” are not in the key but are all in the relation, and all
attributes to the right of the “->” are not in the key with at least one actually being in the
relation.

• Data redundancy arises from this

• we duplicate address if a manager is in charge of more than one project

• causes problems if we had to change the address- have to change several entries,
and this could lead to errors.

• Eliminate transitive functional dependency by splitting the table

• create two relations - one with the transitive dependency in it, and another for all
of the remaining attributes.

• split Project into Project and Manager.

• the determinant attribute becomes the primary key in the new relation

• manager becomes the primary key to the Manager relation

• the original key is the primary key to the remaining non-transitive attributes

• in this case, project_no remains the key to the new Projects table.

12/08/02 18:16 CO22001 Database Systems

Page 76 Copyright © 2001 Napier University +44 141 455 2754

project_no manager

p1 Black,B

p2 Smith,J

p3 Black,B

Project

p4 Black,B

Manager manager address

 Black,B 32 High Street

 Smith,J 11 New Street

• Now we need to store the address only once

• If we need to know a manager's address we can look it up in the Manager relation

• The manager attribute is the link between the two tables, and in the Projects table it is
now a foreign key.

• These relations are now in third normal form.

Summary: 1NF
• A relation is in 1NF if it contains no repeating groups

• To convert an unnormalised relation to 1NF either:

• Flatten the table and change the primary key, or

• Decompose the relation into smaller relations, one for the repeating groups and
one for the non-repeating groups.

• Remember to put the primary key from the original relation into both new
relations.

• This option is liable to give the best results.

Summary: 2NF
• A relation is in 2NF if it contains no repeating groups and no partial key functional

dependencies

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 77

• Rule: A relation in 1NF with a single key field must be in 2NF

• To convert a relation with partial functional dependencies to 2NF. create a set of
new relations:

• One relation for the attributes that are fully dependent upon the key.

• One relation for each part of the key that has partially dependent attributes

Summary: 3NF
• A relation is in 3NF if it contains no repeating groups, no partial functional

dependencies, and no transitive functional dependencies

• To convert a relation with transitive functional dependencies to 3NF,
remove the attributes involved in the transitive dependency and put them
in a new relation

• Rule: A relation in 2NF with only one non-key attribute must be in 3NF

• In a normalised relation a non-key field must provide a fact about the key,
the whole key and nothing but the key.

• Relations in 3NF are sufficient for most practical database design problems.
However, 3NF does not guarantee that all anomalies have been removed.

Unit 3.2 - Normalisation 2

Unit 3.2 - Normalisation Continued
Overview

• normalise a relation to Boyce Codd Normal Form (BCNF)

• normalise a relation to forth normal form (4NF)

• normalise a relation to fifth normal form (5NF)

Boyce-Codd Normal Form (BCNF)
• When a relation has more than one candidate key, anomalies may result even

though the relation is in 3NF.

• 3NF does not deal satisfactorily with the case of a relation with overlapping
candidate keys

• i.e. composite candidate keys with at least one attribute in common.

12/08/02 18:16 CO22001 Database Systems

Page 78 Copyright © 2001 Napier University +44 141 455 2754

• BCNF is based on the concept of a determinant.

• A determinant is any attribute (simple or composite) on which some other
attribute is fully functionally dependent.

• A relation is in BCNF is, and only if, every determinant is a candidate key.

Consider the following relation and determinants.

 R(a,b,c,d)
 a,c -> b,d
 a,d -> b

Here, the first determinant suggests that the primary key of R could be changed from a,b to a,c.
If this change was done all of the non-key attributes present in R could still be determined, and
therefore this change is legal. However, the second determinant indicates that a,d determines b,
but a,d could not be the key of R as a,d does not determine all of the non key attributes of R (it
does not determine c). We would say that the first determinate is a candidate key, but the second
determinant is not a candidate key, and thus this relation is not in BCNF (but is in 3rd normal
form).

Normalisation to BCNF - Example 1

Patient
No

Patient Name Appointment Id Time Doctor

1 John 0 09:00 Zorro

2 Kerr 0 09:00 Killer

3 Adam 1 10:00 Zorro

4 Robert 0 13:00 Killer

5 Zane 1 14:00 Zorro

Lets consider the database extract shown above. This depicts a special dieting clinic where the
each patient has 4 appointments. On the first they are weighed, the second they are exercised, the
third their fat is removed by surgery, and on the fourth their mouth is stitched closed… Not all
patients need all four appointments! If the Patient Name begins with a letter before “P” they get a
morning appointment, otherwise they get an afternoon appointment. Appointment 1 is either
09:00 or 13:00, appointment 2 10:00 or 14:00, and so on. From this (hopefully) make-believe
scenario we can extract the following determinants:

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 79

DB(Patno,PatName,appNo,time,doctor)

Patno -> PatName
Patno,appNo -> Time,doctor
Time -> appNo

Now we have to decide what the primary key of DB is going to be. From the information we
have, we could chose:
 DB(Patno,PatName,appNo,time,doctor) (example 1a)
or
 DB(Patno,PatName,appNo,time,doctor) (example 1b)

Example 1a - DB(Patno,PatName,appNo,time,doctor)

• 1NF Eliminate repeating groups.

None:

DB(Patno,PatName,appNo,time,doctor)

• 2NF Eliminate partial key dependencies
DB(Patno,appNo,time,doctor)
R1(Patno,PatName)

• 3NF Eliminate transitive dependencies
None: so just as 2NF

• BCNF Every determinant is a candidate key
 DB(Patno,appNo,time,doctor)
 R1(Patno,PatName)

• Go through all determinates where ALL of the left hand attributes are present
in a relation and at least ONE of the right hand attributes are also present in
the relation.

• Patno -> PatName
Patno is present in DB, but not PatName, so not relevant.

• Patno,appNo -> Time,doctor
All LHS present, and time and doctor also present, so relevant. Is this a
candidate key? Patno,appNo IS the key, so this is a candidate key. Thus
this is OK for BCNF compliance.

• Time -> appNo
Time is present, and so is appNo, so relevant. Is this a candidate key. If it
was then we could rewrite DB as:
 DB(Patno,appNo,time,doctor)
This will not work, as you need both time and Patno together to form a

12/08/02 18:16 CO22001 Database Systems

Page 80 Copyright © 2001 Napier University +44 141 455 2754

unique key. Thus this determinate is not a candidate key, and therefore DB
is not in BCNF. We need to fix this.

• BCNF: rewrite to
 DB(Patno,time,doctor)
 R1(Patno,PatName)
 R2(time,appNo)

time is enough to work out the appointment number of a patient. Now BCNF
is satisfied, and the final relations shown are in BCNF.

Example 1b - DB(Patno,PatName,appNo,time,doctor)

• 1NF Eliminate repeating groups.

None:

DB(Patno,PatName,appNo,time,doctor)

• 2NF Eliminate partial key dependencies
DB(Patno,time,doctor)
R1(Patno,PatName)
R2(time,appNo)

• 3NF Eliminate transitive dependencies
None: so just as 2NF

• BCNF Every determinant is a candidate key
 DB(Patno,appNo,time,doctor)
 R1(Patno,PatName)

• Go through all determinates where ALL of the left hand attributes are present
in a relation and at least ONE of the right hand attributes are also present in
the relation.

• Patno -> PatName
Patno is present in DB, but not PatName, so not relevant.

• Patno,appNo -> Time,doctor
Not all LHS present, so not relevant.

• Time -> appNo
Time is present, and so is appNo, so relevant. Is this a candidate key.
However, is the key and determinant for R2, so it is OK for BCNF.

• BCNF: as 3NF
 DB(Patno,time,doctor)
 R1(Patno,PatName)
 R2(time,appNo)

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 81

Summary - Example 1
This example has demonstrated three things:

1. BCNF is stronger than 3NF, relations that are in 3NF are not necessarily in BCNF

2. BCNF is needed in certain situations to obtain full understanding of the data
model

3. there are several routes to take to arrive at the same set of relations in BCNF.

• Unfortunately there are no rules as to which route will be the easiest one
to take.

Example 2

Grade_report(StudNo,StudName,(Major,Adviser,
 (Course,Ctitle,InstrucName,InstructLocn,Grade)))

• Functional dependencies

 StudNo -> StudName
 CourseNo -> Ctitle,InstrucName
 InstrucName -> InstrucLocn
 StudNo,CourseNo,Major -> Grade
 StudNo,Major -> Advisor
 Advisor -> Major

• Unnormalised

Grade_report(StudNo,StudName,(Major,Adviser,
 (Course,Ctitle,InstrucName,InstructLocn,Grade)))

• 1NF Remove repeating groups

Student(StudNo,StudName)
StudMajor(StudNo,Major,Adviser)
StudCourse(StudNo,Major,Course,
 Ctitle,InstrucName,InstructLocn,Grade)

• 2NF Remove partial key dependencies

Student(StudNo,StudName)
StudMajor(StudNo,Major,Adviser)
StudCourse(StudNo,Major,Course,Grade)
Course(Course,Ctitle,InstrucName,InstructLocn)

• 3NF Remove transitive dependencies

Student(StudNo,StudName)
StudMajor(StudNo,Major,Adviser)
StudCourse(StudNo,Major,Course,Grade)
Course(Course,Ctitle,InstrucName)
Instructor(InstructName,InstructLocn)

12/08/02 18:16 CO22001 Database Systems

Page 82 Copyright © 2001 Napier University +44 141 455 2754

• BCNF Every determinant is a candidate key

• Student : only determinant is StudNo

• StudCourse: only determinant is StudNo,Major

• Course: only determinant is Course

• Instructor: only determinant is InstrucName

• StudMajor: the determinants are

• StudNo,Major, or

• Adviser

Only StudNo,Major is a candidate key.

• BCNF

Student(StudNo,StudName)
StudCourse(StudNo,Major,Course,Grade)
Course(Course,Ctitle,InstrucName)
Instructor(InstructName,InstructLocn)
StudMajor(StudNo,Adviser)
Adviser(Adviser,Major)

Problems BCNF overcomes
STUDENT MAJOR ADVISOR

123 PHYSICS EINSTEIN

123 MUSIC MOZART

456 BIOLOGY DARWIN

789 PHYSICS BOHR

999 PHYSICS EINSTEIN

• If the record for student 456 is deleted we lose not only information on student
456 but also the fact that DARWIN advises in BIOLOGY

• we cannot record the fact that WATSON can advise on COMPUTING until we
have a student majoring in COMPUTING to whom we can assign WATSON as
an advisor.

In BCNF we have two tables:

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 83

STUDENT ADVISOR

123 EINSTEIN

123 MOZART

456 DARWIN

789 BOHR

999 EINSTEIN

ADVISOR MAJOR

EINSTEIN PHYSICS

MOZART MUSIC

DARWIN BIOLOGY

BOHR PHYSICS

Fourth Normal Form
Under 4NF, a record type should not contain two or more independent multi-valued facts
about an entity. Note that 4NF and 5NF are not examinable, and are shown here for
completeness. They should never occur using the approaches you have been taught in this
module, but can occur if you were taking over a database project where poor design
techniques were involved or where redundancy was deliberately introduced for some
reason.

• A relation is in 4NF if it is in BCNF and it contains no multi-valued
dependencies.

• A multi-valued fact may correspond to a many-many relationship or to a many-
one relationship.

• A multi-valued dependency exists when there are three attributes (e.g. A,B, and
C) in a relation, and for each value of A there is a well-defined set of valued B
and a well defined set of values C. However, the set of values of B is independent
of set C and vice-versa.

12/08/02 18:16 CO22001 Database Systems

Page 84 Copyright © 2001 Napier University +44 141 455 2754

Example
• Consider information stored about movie stars. It includes details of their various

addresses and the movies they starred in:

• Name - Address

• Name - Movie

Name Street City Title Year

 C. Fisher 123 Maple St. Hollywood Star Wars 1977

 C. Fisher 5 Locust Ln. Malibu Star Wars 1977

 C. Fisher 123 Maple St. Hollywood Empire Strikes Back 1980

 C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980

 C. Fisher 123 Maple St. Hollywood Return of the Jedi 1983

 C. Fisher 5 Locust Ln. Malibu Return of the Jedi 1983

• Carrie Fisher has two addresses and has been in three movies

• The only way to express the fact that addresses and movies are independent is to
have each address appear with each movie

• but this has introduced redundancy

• There is no BCNF violation

• But the relation is not in 4NF

• We need to break it up into 2 tables

Name Street City

C. Fisher 123 Maple St. Hollywood

C. Fisher 5 Locust Ln. Malibu

Name Title Year

C.Fisher Star Wars 1977

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 85

C.Fisher Empire Strikes Back 1980

C.Fisher Return of the Jedi 1983

Fifth Normal Form
5NF is designed to cope with a type of dependency called join dependency

• A relation that has a join dependency cannot be decomposed by a projection into
other relations without spurious results

• a relation is in 5NF when its information content cannot be reconstructed from
several smaller relations

• i.e. from relations having fewer attributes than the original relation

Join Dependency Decomposition
Name Language Hobby Name Language Name Hobby

C. Fisher French Cooks C. Fisher French C. Fisher Cooks

C. Fisher Spanish Cooks C. Fisher Spanish C. Fisher Writes

C. Fisher English Writes C. Fisher English M. Brown Read

M. Brown Spanish Read M. Brown Spanish M. Brown Cook

M. Brown Italian Cook M. Brown Italian K. Clark Cook

K. Clark Italian Cook K. Clark Italian K. Clark Decorating

K. Clark Japanese Decorating

K. Clark Japanese

Spurious results
Name Language Hobby Name Language Hobby

C. Fisher French Cooks M. Brown Spanish Cook

C. Fisher French Writes M. Brown Italian Read

C. Fisher Spanish Cooks M. Brown Italian Cook

C. Fisher Spanish Writes K. Clark Italian Cook

C. Fisher English Cooks K. Clark Italian Decorating

C. Fisher English Writes K. Clark Japanese Cook

12/08/02 18:16 CO22001 Database Systems

Page 86 Copyright © 2001 Napier University +44 141 455 2754

M. Brown Spanish Read K. Clark Japanese Decorating

Returning to the ER Model
• Now that we have reached the end of the normalisation process, you must go back

and compare the resulting relations with the original ER model

• You may need to alter it to take account of the changes that have occurred
during the normalisation process Your ER diagram should always be a
prefect reflection of the model you are going to implement in the database,
so keep it up to date!

• The changes required depends on how good the ER model was at first!

Unit 3.3 - Relational Algebra 1

Unit 3.3 - Relational Algebra
In order to implement a DBMS, there must exist a set of rules which state how the
database system will behave. For instance, somewhere in the DBMS must be a set of
statements which indicate than when someone inserts data into a row of a relation, it has
the effect which the user expects. One way to specify this is to use words to write an
`essay' as to how the DBMS will operate, but words tend to be imprecise and open to
interpretation. Instead, relational databases are more usually defined using Relational
Algebra.

Relational Algebra is :

• the formal description of how a relational database operates

• an interface to the data stored in the database itself

• the mathematics which underpin SQL operations

Operators in relational algebra are not necessarily the same as SQL operators, even if
they have the same name. For example, the SELECT statement exists in SQL, and also
exists in relational algebra. These two uses of SELECT are not the same. The DBMS
must take whatever SQL statements the user types in and translate them into relational
algebra operations before applying them to the database.

Terminology
• Relation - a set of tuples.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 87

• Tuple - a collection of attributes which describe some real world entity.

• Attribute - a real world role played by a named domain.

• Domain - a set of atomic values.

• Set - a mathematical definition for a collection of objects which contains no
duplicates.

Operators - Write
• INSERT - provides a list of attribute values for a new tuple in a relation. This

operator is the same as SQL.

• DELETE - provides a condition on the attributes of a relation to determine which
tuple(s) to remove from the relation. This operator is the same as SQL.

• MODIFY - changes the values of one or more attributes in one or more tuples of a
relation, as identified by a condition operating on the attributes of the relation.
This is equivalent to SQL UPDATE.

Operators - Retrieval
There are two groups of operations:

• Mathematical set theory based relations:
UNION, INTERSECTION, DIFFERENCE, and CARTESIAN PRODUCT.

• Special database operations:
SELECT (not the same as SQL SELECT), PROJECT, and JOIN.

Relational SELECT
SELECT is used to obtain a subset of the tuples of a relation that satisfy a select
condition.

For example, find all employees born after 1st Jan 1950:

 SELECTdob '01/JAN/1950'(employee)

Relational PROJECT
The PROJECT operation is used to select a subset of the attributes of a relation by
specifying the names of the required attributes.

For example, to get a list of all employees surnames and employee numbers:

 PROJECTsurname,empno(employee)

12/08/02 18:16 CO22001 Database Systems

Page 88 Copyright © 2001 Napier University +44 141 455 2754

SELECT and PROJECT
SELECT and PROJECT can be combined together. For example, to get a list of
employee numbers for employees in department number 1:

FROM employee
WHERE depno = 1;

SELECT empno

PROJECT empno (SELECTdepno = 1 (employee))

Mapping this back to SQL gives:

Set Operations - semantics
Consider two relations R and S.

• UNION of R and S
the union of two relations is a relation that includes all the tuples that are either in
R or in S or in both R and S. Duplicate tuples are eliminated.

• INTERSECTION of R and S
the intersection of R and S is a relation that includes all tuples that are both in R
and S.

• DIFFERENCE of R and S
the difference of R and S is the relation that contains all the tuples that are in R
but that are not in S.

SET Operations - requirements
For set operations to function correctly the relations R and S must be union compatible.
Two relations are union compatible if

• they have the same number of attributes

• the domain of each attribute in column order is the same in both R and S.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 89

UNION Example

B
C

F
4

2
2

A

D
E

E

1

3
5
4

R
A 1
B
D
F
E

2
3
4
5

S
A
C
D
E 4

3
2
1

R UNION S

INTERSECTION Example

A 1
C 2
D 3
E 4

E 5
F 4
D 3
B 2
A 1

A 1
D 3

R

S

R |NTERSECTION S

12/08/02 18:16 CO22001 Database Systems

Page 90 Copyright © 2001 Napier University +44 141 455 2754

DIFFERENCE Example

A 1
C 2
D 3
E 4

E 5
F 4
D 3
B 2
A 1

C 2
E 4

B 2
F 4
E 5

R

S

R DIFFERENCE S

S DIFFERENCE R

CARTESIAN PRODUCT
The Cartesian Product is also an operator which works on two sets. It is sometimes called
the CROSS PRODUCT or CROSS JOIN.

It combines the tuples of one relation with all the tuples of the other relation.

CARTESIAN PRODUCT example

E 5
F 4
D 3
B 2
A 1

A 1
C 2
D 3
E 4

A 1 A 1
C 2
D 3
E 4

B 2 A 1
C 2
D 3
E 4
A 1
C 2
D 3
E 4

F 4 A 1
C 2
D 3
E 4

E 5 A 1
C 2
D 3
E 4

D 3

A 1
A 1
A 1

B 2
B 2
B 2

D 3
D 3
D 3

F 4
F 4
F 4

E 5
E 5
E 5

R

S

R CROSS S

JOIN Operator
JOIN is used to combine related tuples from two relations:

• In its simplest form the JOIN operator is just the cross product of the two
relations.

• As the join becomes more complex, tuples are removed within the cross product
to make the result of the join more meaningful.

• JOIN allows you to evaluate a join condition between the attributes of the
relations on which the join is undertaken.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 91

The notation used is

 R JOINjoin condition S

JOIN Example

E 5
F 4
D 3
B 2
A 1

A 1
C 2
D 3
E 4

R JOINR.ColA = S.SColA S

A 1

A 1
B 2

A 1
D 3
E 5

D 3
E 4

E 4

A 1
C 2

D 3
F 4

D 3

ColA ColB

SColBSColAS

R

R JOINR.ColB = S.SColB S

Natural Join
Invariably the JOIN involves an equality test, and thus is often described as an equi-join.
Such joins result in two attributes in the resulting relation having exactly the same value.
A `natural join' will remove the duplicate attribute(s).

• In most systems a natural join will require that the attributes have the same name
to identify the attribute(s) to be used in the join. This may require a renaming
mechanism.

• If you do use natural joins make sure that the relations do not have two attributes
with the same name by accident.

OUTER JOINs
Notice that much of the data is lost when applying a join to two relations. In some cases
this lost data might hold useful information. An outer join retains the information that
would have been lost from the tables, replacing missing data with nulls.

There are three forms of the outer join, depending on which data is to be kept.

• LEFT OUTER JOIN - keep data from the left-hand table

• RIGHT OUTER JOIN - keep data from the right-hand table

• FULL OUTER JOIN - keep data from both tables

12/08/02 18:16 CO22001 Database Systems

Page 92 Copyright © 2001 Napier University +44 141 455 2754

OUTER JOIN example 1

E 5
F 4
D 3
B 2
A 1

A 1
C 2
D 3
E 4

R.ColA = S.SColA SR LEFT OUTER JOIN

A 1 A 1
D 3
E 4

- -
- -

D 3
E 5

F 4
B 2

A 1 A 1
D 3
E 4

D 3
E 5
- - C 2

ColA ColB

SColBSColAS

R

R.ColA = S.SColA SR RIGHT OUTER JOIN

OUTER JOIN example 2

E 5
F 4
D 3
B 2
A 1

A 1
C 2
D 3
E 4

R.ColA = S.SColA SR FULL OUTER JOIN

A 1 A 1
D 3
E 4

- -
- -

D 3
E 5

F 4
B 2

- - C 2

ColA ColB

SColBSColAS

R

Unit 3.4 - Relational Algebra 2

Unit 3.4 - Relational Algebra - Example
Consider the following SQL to find which departments have had employees on the
`Further Accounting' course.

 SELECT DISTINCT dname
 FROM department, course, empcourse, employee
 WHERE cname = `Further Accounting'
 AND course.courseno = empcourse.courseno
 AND empcourse.empno = employee.empno
 AND employee.depno = department.depno;

The equivalent relational algebra is

 PROJECTdname (department JOINdepno = depno (
 PROJECTdepno (employee JOINempno = empno (

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 93

 PROJECTempno (empcourse JOINcourseno = courseno (
 PROJECTcourseno (SELECTcname = `Further Accounting' course)
))
))
))

Symbolic Notation
From the example, one can see that for complicated cases a large amount of the answer is
formed from operator names, such as PROJECT and JOIN. It is therefore commonplace
to use symbolic notation to represent the operators.

• SELECT ->σ (sigma)

• PROJECT -> π(pi)

• PRODUCT -> ×(times)

• JOIN -> |x| (bow-tie)

• UNION -> ∪(cup)

• INTERSECTION -> ∩(cap)

• DIFFERENCE -> - (minus)

• RENAME ->ρ (rho)

Usage
The symbolic operators are used as with the verbal ones. So, to find all employees in
department 1:

 SELECTdepno = 1(employee)
 becomes σdepno = 1(employee)

Conditions can be combined together using ^ (AND) and v (OR). For example, all
employees in department 1 called `Smith':

 SELECTdepno = 1 ^ surname = `Smith'(employee)
 becomes σdepno = 1 ^ surname = `Smith'(employee)

The use of the symbolic notation can lend itself to brevity. Even better, when the JOIN is
a natural join, the JOIN condition may be omitted from |x|. The earlier example resulted
in:

 PROJECTdname (department JOINdepno = depno (
 PROJECTdepno (employee JOINempno = empno (
 PROJECTempno (empcourse JOINcourseno = courseno (
 PROJECTcourseno (SELECTcname = `Further Accounting' course)))))))

becomes

12/08/02 18:16 CO22001 Database Systems

Page 94 Copyright © 2001 Napier University +44 141 455 2754

 πdname (department |x| (
 πdepno (employee |x| (
 πempno (empcourse |x| (
 πcourseno (σcname = `Further Accounting' course)))))))

Rename Operator
The rename operator returns an existing relation under a new name. σA(B) is the relation
B with its name changed to A. For example, find the employees in the same Department
as employee 3.

 πemp2.surname,emp2.forenames (
 σemployee.empno = 3 ^ employee.depno = emp2.depno (
 employee × (ρemp2employee)
)
)

Derivable Operators
• Fundamental operators:σ, π, ×, ∪, -, ρ

• Derivable operators: |x|,∩

A

B
<=> A - (A - B)

A B

A B

A B

Equivalence

A|x|cB <=> πa1,a2,...aN(σc(A × B))

• where c is the join condition (eg A.a1 = B.a1),

• and a1,a2,...aN are all the attributes of A and B without repetition.

c is called the join-condition, and is usually the comparison of primary and foreign key.
Where there are N tables, there are usually N-1 join-conditions. In the case of a natural
join, the conditions can be missed out, but otherwise missing out conditions results in a
cartesian product (a common mistake to make).

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 95

Equivalences
The same relational algebraic expression can be written in many different ways. The
order in which tuples appear in relations is never significant.

• A ×B <=> B ×A

• A ∩ B <=> B ∩A

• A ∪B <=> B ∪A

• (A - B) is not the same as (B - A)

• σc1 (σc2(A)) <=> σc2 (σc1(A)) <=> σc1 ^ c2(A)

• πa1(A) <=> πa1(πa1,etc(A))
where etc represents any other attributes of A.

• many other equivalences exist.

While equivalent expressions always give the same result, some may be much easier to
evaluate that others.

When any query is submitted to the DBMS, its query optimiser tries to find the most
efficient equivalent expression before evaluating it.

Comparing RA and SQL
• Relational algebra:

• is closed (the result of every expression is a relation)

• has a rigorous foundation

• has simple semantics

• is used for reasoning, query optimisation, etc.

• SQL:

• is a superset of relational algebra

• has convenient formatting features, etc.

• provides aggregate functions

• has complicated semantics

• is an end-user language.

12/08/02 18:16 CO22001 Database Systems

Page 96 Copyright © 2001 Napier University +44 141 455 2754

Comparing RA and SQL
Any relational language as powerful as relational algebra is called relationally complete.

A relationally complete language can perform all basic, meaningful operations on
relations.

Since SQL is a superset of relational algebra, it is also relationally complete.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 97

Unit 4.1 - Transactions

Unit 4.1 - Concurrency using
Transactions
The goal in a `concurrent' DBMS is to allow multiple users to access the database
simultaneously without interfering with each other.

A problem with multiple users using the DBMS is that it may be possible for two users to
try and change data in the database simultaneously. If this type of action is not carefully
controlled, inconsistencies are possible.

To control data access, we first need a concept to allow us to encapsulate database
accesses. Such encapsulation is called a `Transaction'.

Transactions
• Transaction (ACID)

• unit of logical work and recovery

• atomicity (for integrity)

• consistency preservation

• isolation

• durability

• Available in SQL

• Some applications require nested or long transactions

After work is performed in a transaction, two outcomes are possible:

• Commit - Any changes made during the transaction by this transaction are
committed to the database.

• Abort - All the changes made during the transaction by this transaction are not
made to the database. The result of this is as if the transaction was never started.

Transaction Schedules
A transaction schedule is a tabular representation of how a set of transactions were
executed over time. This is useful when examining problem scenarios. Within the
diagrams various nomenclatures are used:

12/08/02 18:16 CO22001 Database Systems

Page 98 Copyright © 2001 Napier University +44 141 455 2754

• READ(a) - This is a read action on an attribute or data item called `a'.

• WRITE(a) - This is a write action on an attribute or data item called `a'.

• WRITE(a[x]) - This is a write action on an attribute or data item called `a', where
the value `x' is written into `a'.

• tn (e.g. t1,t2,t10) - This indicates the time at which something occurred. The units
are not important, but tn always occurs before tn+1.

Consider transaction A, which loads in a bank account balance X (initially 20) and adds
10 pounds to it. Such a schedule would look like this:

Time Transaction A

t1 TOTAL:=READ(X)

t2 TOTAL:=TOTAL+10

t3 WRITE(X[30])

Now consider that, at the same time as transaction A runs, transaction B runs.
Transaction B gives all accounts a 10% increase. Will X be 32 or 33?

Time Transaction A Transaction B

t1 TOTAL:=READ(X)

t2 TOTAL:=READ(X)

t3 TOTAL:=TOTAL+10

t4 WRITE(X[30])

t5 TOTAL:=TOTAL*110%

t6 WRITE(X[22])

Whoops... X is 22! Depending on the interleaving, X can also be 32, 33, or 30. Lets
classify erroneous scenarios.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 99

Lost Update scenario.
Time Transaction A Transaction B

t1 READ(R)

t2 READ(R)

t3 WRITE(R)

t4 WRITE(R)

Transaction A's update is lost at t4, because Transaction B overwrites it. B missed A's
update at t3 as it got the value of R at t2.

Uncommitted Dependency

Time Transaction A Transaction B

t1 WRITE(R)

t2 READ(R)

t3 ABORT

Transaction A is allowed to READ (or WRITE) item R which has been updated by
another transaction but not committed (and in this case ABORTed).

12/08/02 18:16 CO22001 Database Systems

Page 100 Copyright © 2001 Napier University +44 141 455 2754

Inconsistency
Time X Y Z Transaction A Transaction B

 Action SUM

t1 40 50 30 SUM:=READ(X) 40

t2 40 50 30 SUM+=READ(Y) 90

t3 40 50 30 READ(Z)

t4 40 50 20 WRITE(Z[20])

t5 40 50 20 READ(X)

t6 50 50 20 WRITE(X[50])

t7 50 50 20 COMMIT

t7 50 50 20 SUM+=READ(Z) 110

 SUM should have been 120...

Serialisability
• A `schedule' is the actual execution sequence of two or more concurrent

transactions.

• A schedule of two transactions T1 and T2 is `serialisable' if and only if executing
this schedule has the same effect as either T1;T2 or T2;T1.

Precedence Graph
In order to know that a particular transaction schedule can be serialized, we can draw a
precedence graph. This is a graph of nodes and vertices, where the nodes are the
transaction names and the vertices are attribute collisions. To draw one;

The schedule is said to be serialised if and only if there are no cycles in the resulting
diagram.

Precedence Graph : Method
To draw one;

1. Draw a node for each transaction in the schedule

2. Where transaction A writes to an attribute which transaction B has read from,
draw an line pointing from B to A.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 101

3. Where transaction A writes to an attribute which transaction B has written to,
draw a line pointing from B to A.

4. Where transaction A reads from an attribute which transaction B has written to,
draw a line pointing from B to A.

Example 1
Consider the following schedule:

T1 time T2

read(A) t1

read(B) t2

 t3 read(A)

 t4 read(B)

 t5

write(B) t6

 t7 write(B)

Example 2
Consider the following schedule:

T1 time T2 T3

read(A) t1

read(B) t2

 t3 read(A)

 t4 read(B)

write(C) t5

 t6 write(A)

write(B) t7

 t8 write(C)

T1 T2

T3 T2

T1
B

C

A

A

B

B

12/08/02 18:16 CO22001 Database Systems

Page 102 Copyright © 2001 Napier University +44 141 455 2754

Unit 4.2 - Concurrency

Unit 4.2 - Concurrency
Locking

A solution to enforcing serialisability?

• read (shareable) lock

• write (exclusive) lock

• coarse granularity

• easier processing

• less concurrency

• fine granularity

• more processing

• higher concurrency

Many systems use locking mechanisms for concurrency control. When a transaction
needs an assurance that some object will not change in some unpredictable manner, it
acquires a lock on that object.

• A transaction holding a read lock is permitted to read an object but not to change
it.

• More than one transaction can hold a read lock for the same object.

• Usually, only one transaction may hold a write lock on an object.

• On a transaction schedule, we use `S' to indicate a shared lock, and `X' for an
exclusive write lock.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 103

Locking - Uncommitted Dependency
Locking solves the uncommitted dependency problem.

Time Transaction A Transaction B Lock on R

t1 WRITE(R) - = X

t2 READ R (WAIT) X

t3 ...wait... ABORT X = -

t4 READ R (CONT) - = S

Deadlock
Deadlock can arise when locks are used, and causes all related transactions to WAIT
forever...

time Transaction A Transaction B Lock State

 X Y

t1 WRITE(X) - = X -

t2 WRITE(Y) X - = X

t3 READ(Y) (WAIT) X X

t3 ...WAIT... READ(X) (WAIT) X X

t3 ...WAIT... ...WAIT... X X

The `lost update' senario results in deadlock with locks. So does the `inconsistency'
scenario.

12/08/02 18:16 CO22001 Database Systems

Page 104 Copyright © 2001 Napier University +44 141 455 2754

time Transaction A Transaction B Lock R

t1 READ(R) - = S

t2 READ(R) S = S

t3 WRITE(R) (WAIT) S

t3 ...wait... WRITE(R) (WAIT) S

t3 ...wait... ...wait... S

Deadlock Handling
• Deadlock avoidance

• pre-claim strategy used in operating systems

• not effective in database environments.

• Deadlock detection

• whenever a lock requests a wait, or on some perodic basis.

• if a transaction is blocked due to another transaction, make sure that that
transaction is not blocked on the first transaction, either directly or
indirectly via another transaction.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 105

Deadlock Resolution
If a set of transactions is considered to be deadlocked:

1. choose a victim (e.g. the shortest-lived transaction)

2. rollback `victim' transaction and restart it.

• The rollback terminates the transaction, undoing all its updates and
releasing all of its locks.

• A message is passed to the victim and depending on the system the
transaction may or may not be started again automatically.

Two-Phase Locking
The presence of locks does not guarantee serialisability. If a transaction is allowed to
release locks before the transaction has completed, and is also allowed to acquire more
(or even the same) locks later then the benifit or locking is lost.

If all transactions obey the `two-phase locking protocol', then all possible interleaved
executions are guarenteed serialisable.

The two-phase locking protocol:

• Before operating on any item, a transaction must acquire at least a shared lock on
that item. Thus no item can be accessed without first obtaining the correct lock.

• After releasing a lock, a transaction must never go on to acquire any more locks.

The technical names for the two phases of the locking protocol are the `lock-acquisition
phase' and the `lock-release phase'.

Other Database Consistency Methods
Two-phase locking is not the only approach to enforcing database consistency. Another
method used in some DMBS is timestamping. With timestamping, there are no locks to
prevent transactions seeing uncommitted changes, and all physical updates are deferred
to commit time.

• locking synchronises the interleaved execution of a set of transactions in such a
way that it is equivalent to some serial execution of those transactions.

• timestamping synchronises that interleaved execution in such a way that it is
equivalent to a particular serial order - the order of the timestamps.

12/08/02 18:16 CO22001 Database Systems

Page 106 Copyright © 2001 Napier University +44 141 455 2754

Timestamping rules
The following rules are checked when transaction T attempts to change a data item. If the
rule indicates ABORT, then transaction T is rolled back and aborted (and perhaps
restarted).

• If T attempts to read a data item which has already been written to by a younger
transaction then ABORT T.

• If T attempts to write a data item which has been seen or written to by a younger
transaction then ABORT T.

If transaction T aborts, then all other transactions which have seen a data item written to
by T must also abort. In addition, other aborting transactions can cause further aborts on
other transactions. This is a `cascading rollback'.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 107

Unit 4.3 - Storage Structures

Unit 4.3 – Storage Structures
The Physical Store

Storage Medium Transfer Rate Capacity Seek Time

Main Memory 800 MB/s 100 MB Instant

Hard Drive 10 MB/s 10 GB 10 ms

CD-ROM Drive 5 MB/s 0.6 GB 100 ms

Floppy Drive 2 MB/s 1.44 MB 300 ms

Tape Drive 1 MB/s 20 GB 30 s

Why not all Main Memory?
The performance of main memory is the greatest of all storage methods, but it is also the
most expensive per MB.

• All the other types of storage are `persistent'. A persistent store keeps the data
stored on it even when the power is switched off.

• Only main memory can be directly accessed by the programmer. Data held using
other methods must be loaded into main memory before being accessed, and must
be transferred back to storage from main memory in order to save the changes.

• We tend to refer to storage methods which are not main memory as `secondary
storage'.

Secondary Storage - Blocks
All storage devices have a block size. Block size is the minimum amount which can be
read or written to on a storage device. Main memory can have a block size of 1-8 bytes,
depending on the processor being used. Secondary storage blocks are usually much
bigger.

• Hard Drive disk blocks are usually 4 KBytes in size.

• For efficiency, multiple contiguous blocks can be be requested.

• On average, to access a block you first have to request it, wait the seek time, and

12/08/02 18:16 CO22001 Database Systems

Page 108 Copyright © 2001 Napier University +44 141 455 2754

then wait the transfer time of the blocks requested.

• Remember, you cannot read or write data smaller than a single block.

Hard Drives
The most common secondary storage medium for DBMS is the hard drive.

• Data on a hard-drive is often arranged into files by the Operating System.

• the DBMS holds the database within one or more files.

• The data is arranged within a file in blocks, and the position of a block within a
file is controlled by the DBMS.

• Files are stored on the disk in blocks, but the placement of a file block on the disk
is controlled by the O/S (although the DBMS may be allowed to `hint' to the O/S
concerning disk block placement strategies).

• File blocks and disk blocks are not necessarily equal in size.

DBMS Data Items
Data from the DBMS is split into records.

• a record is a logical collection of data items

• a file is a collection of records.

• one or more records may map onto a single or multiple file blocks.

• a single record may map onto multiple file blocks.

Comparing terminology...

Relational SQL Physical Storage

Relation Table File

Tuple Row Record

Attribute Column Data Item/Field

Domain Type Data Type

File Organisations
• Serial (or unordered, or heap) - records are written to secondary storage in the

order in which they are created.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 109

• Sequential (or sorted, or ordered) - records are written to secondary storage in the
sorted order of a key (one or more data items) from each record.

• Hash - A `hash' function is applied to each record key, which returns a number
used to indicate the position of the record in the file. The hash function must be
used for both reading and writing.

• Indexed - the location in secondary storage of some (partial index) or all (full
index) records is noted in an index.

Storage Scenario
To better explain each of these file organisations we will create 4 records and place them
in secondary storage. The records are created by a security guard, and records who passes
his desk in the morning and at what time they pass.

The records therefore each have three data items; `name', `time', and `id number'. Only
four people arrive for work:

1. name=`Russell' at time=`0800' with id_number=`004'.

2. name=`Greg' at time=`0810' with id_number=`007'.

3. name=`Jon' at time=`0840' with id_number=`002'.

4. name=`Cumming' at time=`0940' with id_number=`003'.

Serial Organisation

1 2 3 4

Russell
0800
004

Greg Jon Cumming
0810 0840 0940
007 002 003

• Writing - the data is written at the end of the previous record.

• Reading -

• reading records in the order they were written is a cheap operation.

• Trying to find a particular record means you have to read each record in
turn until you locate it. This is expensive.

• Deleting - Deleting data in such an structure usually means marking the data as
deleted (thus not actually removing it) which is cheap but wasteful or rewriting
the whole file to overwrite the deleted record (space-efficient but expensive).

12/08/02 18:16 CO22001 Database Systems

Page 110 Copyright © 2001 Napier University +44 141 455 2754

Sequential Organisation
Russell
0800
004

Jon
0840
002

Cumming
0940
003

Greg
0810
007

3 41 2

• Writing - records are in `id number' order, thus new records may need to be
inserted into the store needing a complete file copy (expensive).

• Deleting - as with serial, either leave holes or perform make file copies.

• Reading -

• reading records in `id number' order is cheap.

• the ability to chose sort order makes this more useful than serial.

• `binary search' could be used. Goto middle of file - if record key greater
than that wanted search the low half, else search the high half, until the
record is found. (average accesses to find something is
log2no_of_records.)

Hash Organisation

Greg
0810
007

Russell
0800
004

Jon
0840
002

Cumming
0940
003

3 41 2

Key (id number) Key MOD 6

• Writing - Initially the file has 6 spaces (n MOD 6 can be 0-5). To write, calculate
the hash and write the record in that location (cheap).

• Deleting - leave holes by marking the record deleted (wasteful of space but cheap
to process).

• Reading -

• reading records an order is expensive.

• finding a particular record from a key is cheap and easy.

• If two records can result in the same hash number, then a strategy must be
found to solve this problem (which will incur overheads).

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 111

Indexed Sequential Access Method
The Indexed Sequential Access Method (ISAM) is frequently used for partial indexes.

• there may be several levels of indexes, commonly 3

• each index-entry is equal to the highest key of the records or indices it points to.

• the records of the file are effectively sorted and broken down into small groups of
data records.

• the indices are built when the data is first loaded as sorted records.

• the index is static, and does not change as records are inserted and deleted

• insertion and deletion adds to one of the small groups of data records. As the
number in each group changes, the performance may deteriorate.

ISAM Example
100 500 1000 1500 2000 Highest Key

Pointer

...........

...........

1, 2, 3, 4 17,19,20 1981,1984 1977,1999,2000....

20 40 60 80 100 1920 1940 1960 1980 2000

4 8 12 16 20 1984 1988 1992 1996 2000

1st Level Index

2nd Level Index

3rd Level Index

Data Records

B+ Tree Index
With B+ tree, a full index is maintained, allowing the ordering of the records in the file to
be independent of the index. This allows multiple B+ tree indices to be kept for the same
set of data records.

• the lowest level in the index has one entry for each data record.

• the index is created dynamically as data is added to the file.

• as data is added the index is expanded such that each record requires the same
number of index levels to reach it (thus the tree stays `balanced').

• the records can be accessed via an index or sequentially.

Each index node in a B+ Tree can hold a certain number of keys. The number of keys is
often referred to as the `order'. Unfortunately, `Order 2' and `Order 1' are frequently
confused in the database literature. For the purposes of our coursework and exam, `Order
2' means that there can be a maximum of 2 keys per index node. In this module, we only
ever consider order 2 B+ trees.

12/08/02 18:16 CO22001 Database Systems

Page 112 Copyright © 2001 Napier University +44 141 455 2754

B+ Tree Example

90 60 55 70 65 30 10 69

10 30 55 60 65 69 70 90

30 55 69 70

60

Building a B+ Tree
• Only nodes at the bottom of the tree point to records, and all other nodes point to

other nodes. Nodes which point to records are called leaf nodes.

• If a node is empty the data is added on the left. 60

• If a node has one entry, then the left takes the smallest valued key and the right

takes the biggest. 6030

• If a node is full and is a leaf node, classify the keys L (lowest), M (middle value)
and H (highest), and split the node.

 L M H

M

• If a node is full and is not a leaf node, classify the keys L (lowest), M (middle
value) and H (highest), and split the node.

 L H

M

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 113

B+ Tree Build Example
60

55 60 70 90

60

55 60 907065

70

90 60 90

60

55 60 90

Add 90 Add 60 Add 55 Add 70

Add 65 Add 30

90706555 6030

70

60

55

90706560

70

60

55

30 5510

30

Add 10

6560

60

55

30 5510

30

Add 69

7069

907069

Index Structure and Access
• The top level of an index is usually held in memory. It is read once from disk at

the start of queries.

• Each index entry points to either another level of the index, a data record, or a
block of data records.

• The top level of the index is searched to find the range within which the desired
record lies.

• The appropriate part of the next level is read into memory from disc and searched.

• This continues until the required data is found.

• The use of indices reduce the amount of file which has to be searched.

12/08/02 18:16 CO22001 Database Systems

Page 114 Copyright © 2001 Napier University +44 141 455 2754

Costing Index and File Access
• The major cost of accessing an index is associated with reading in each of the

intermediate levels of the index from a disk (milliseconds).

• Searching the index once it is in memory is comparatively inexpensive
(microseconds).

• The major cost of accessing data records involves waiting for the media to
recover the required blocks (milliseconds).

• Some indexes mix the index blocks with the data blocks, which means that disk
accesses can be saved because the final level of the index is read into memory
with the associated data records.

Use of Indexes
• A DBMS may use different file organisations for its own purposes.

• A DBMS user is generally given little choice of file type.

• A B+ Tree is likely to be used wherever an index is needed.

• Indexes are generated:

• (Probably) for fields specified with `PRIMARY KEY' or `UNIQUE'
constraints in a CREATE TABLE statement.

• For fields specified in SQL statements such as CREATE [UNIQUE]
INDEX indexname ON tablename (col [,col]...);

• Primary Indexes have unique keys.

• Secondary Indexes may have duplicates.

• An index on a column which is used in an SQL `WHERE' predicate is likely to
speed up an enquiry.

• this is particularly so when `=' is involved (equijoin)

• no improvement will occur with `IS [NOT] NULL' statements

• an index is best used on a column which widely varying data.

• indexing and column of Y/N values might slow down enquiries.

• an index on telephone numbers might be very good but an index on area
code might be a poor performer.

• Multicolumn index can be used, and the column which has the biggest range of
values or is the most frequently accessed should be listed first.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 115

• Avoid indexing small relations, frequently updated columns, or those with long
strings.

• There may be several indexes on each table. Note that partial indexing normally
supports only one index per table.

• Reading or updating a particular record should be fast.

• Inserting records should be reasonably fast. However, each index has to be
updated too, so increasing the indexes makes this slower.

• Deletion may be slow.

• particularly when indexes have to be updated.

• deletion may be fast if records are simply flagged as `deleted'.

Unit 4.4 - Recovery

Unit 4.4 - Recovery
A database might be left in an inconsistent state when:

• deadlock has occurred.

• a transaction aborts after updating the database.

• software or hardware errors.

• incorrect updates have been applied to the database.

If the database is in an inconsistent state, it is necessary to recover to a consistent state.
The basis of recovery is to have backups of the data in the database.

Recovery: the dump
The simplest backup technique is `the Dump'.

• entire contents of the database is backed up to an auxiliary store.

• must be performed when the state of the database is consistent - therefore no
transactions which modify the database can be running

• dumping can take a long time to perform

• you need to store the data in the database twice.

• as dumping is expensive, it probably cannot be performed as often as one would

12/08/02 18:16 CO22001 Database Systems

Page 116 Copyright © 2001 Napier University +44 141 455 2754

like.

• a cut-down version can be used to take `snapshots' of the most volatile areas.

Recovery: the transaction log
A technique often used to perform recovery is the transaction log or journal.

• records information about the progress of transactions in a log since the last
consistent state.

• the database therefore knows the state of the database before and after each
transaction.

• every so often database is returned to a consistent state and the log may be
truncated to remove committed transactions.

• when the database is returned to a consistent state the process is often referred to
as `checkpointing'.

Deferred Update
Deferred update, or NO-UNDO/REDO, is an algorithm to support ABORT and machine
failure scenarios.

• While a transaction runs, no changes made by that transaction are recorded in the
database.

• On a commit:

1. The new data is recorded in a log file and flushed to disk

2. The new data is then recorded in the database itself.

• On an abort, do nothing (the database has not been changed).

• On a system restart after a failure, REDO the log.

Example
Consider the following transaction T1

Transaction T1

read(A)

write(B[10])

write(C[20])

Commit

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 117

Using deferred update, the process is:

Transaction Action Data

T1 START -

T2 read(A) -

T3 write(B) B = 10

T4 write(C) C = 20

T5 COMMIT -

 Before After

 B=6 B=10
Disk

A=5 C=2 A=5 C=20

If the DMBS fails and is restarted:

1. The disks are physically or logically damaged then recovery from the log is
impossible and instead a restore from a dump is needed.

2. If the disks are OK then the database consistency must be maintained. Writes to
the disk which was in progress at the time of the failure may have only been
partially done.

3. Parse the log file, and where a transaction has been ended with `COMMIT' apply
the data part of the log to the database.

4. If a log entry for a transaction ends with anything other than COMMIT, do
nothing for that transaction.

5. flush the data to the disk, and then truncate the log to zero.

6. the process or reapplying transaction from the log is sometimes referred to as
`rollforward'.

Immediate Update
Immediate update, or UNDO/REDO, is another algorithm to support ABORT and
machine failure scenarios.

• While a transaction runs, changes made by that transaction can be written to the
database at any time. However, the original and the new data being written must
both be stored in the log BEFORE storing it on the database disk.

12/08/02 18:16 CO22001 Database Systems

Page 118 Copyright © 2001 Napier University +44 141 455 2754

• On a commit:

1. All the updates which has not yet been recorded on the disk is first stored
in the log file and then flushed to disk.

2. The new data is then recorded in the database itself.

• On an abort, REDO all the changes which that transaction has made to the
database disk using the log entries.

• On a system restart after a failure, REDO committed changes from log.

Example
Using immediate update, and the transaction T1 again, the process is:

Transaction Action Old Data New Data

T1 START - -

T2 read(A) - -

T3 write(B) B == 6 B = 10

T4 write(C) C == 2 C = 20

T5 COMMIT - -

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 119

 Before During After

 B=6 B=10 B=10
Disk

A=5 C=2 A=5 C=2 A=5 C=20

If the DMBS fails and is restarted:

1. The disks are physically or logically damaged then recovery from the log is
impossible and instead a restore from a dump is needed.

2. If the disks are OK then the database consistency must be maintained. Writes to
the disk which was in progress at the time of the failure may have only been
partially done.

3. Parse the log file, and where a transaction has been ended with `COMMIT' apply
the `new data' part of the log to the database.

4. If a log entry for a transaction ends with anything other than COMMIT, apply the
`old data' part of the log to the database.

5. flush the data to the disk, and then truncate the log to zero.

Rollback
The process of undoing changes done to the disk under immediate update is frequently
referred to as rollback.

• Where the DBMS does not prevent one transaction from reading uncommitted
modifications (a `dirty read') of another transaction (i.e. the uncommitted
dependency problem) then aborting the first transaction also means aborting all
the transactions which have performed these dirty reads.

• as a transaction is aborted, it can therefore cause aborts in other dirty reader
transactions, which in turn can cause other aborts in other dirty reader transaction.
This is referred to as `cascade rollback'.

12/08/02 18:16 CO22001 Database Systems

Page 120 Copyright © 2001 Napier University +44 141 455 2754

Unit 5.1 - Embedded SQL

Unit 5.1 - Embedded SQL
Interactive SQL
So far in the module we have considered only the SQL queries which you can type in at
the SQL prompt. We refer to this as `interactive' SQL. This is a good way to learn SQL.
Interactive SQL also allows the database designer to set up the database structure (tables
and so forth), making small queries or one-off queries, and for testing out ways to extract
data from the database.

SQL itself is a `non-procedural' language. There are no good ways to build up complex
queries, and reuse of queries is complicated. It is good at specifying WHAT is required of
the database, but its control of how the data is manipulated to solve real-world problem
specifications is weak.

Interactive SQL it is not good for more sophisticated applications for which a
programming language with links to SQL might be better. To this end the idea of
EMBEDDED SQL was produced.

Embedded SQL
SQL can be embedded within procedural programming languages. These language
(sometimes referred to as 3GLs) include C/C++, Cobol, Fortran, and Ada. Thus the
embedded SQL provides the 3GL with a way to manipulate a database, supporting:

• highly customized applications

• background applications running without user intervention

• database manipulation which exceeds the abilities of simple SQL

• applications linking to Oracle packages, e.g. forms and reports

• applications which need customized window interfaces

SQL Precompiler
A precompiler is used to translate SQL statements embedded in a host language into
DBMS library calls which can be implemented in the host language.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 121

Editor

Precompiler

Linker

Compiler

host program + embedded SQL

executable program

object (binary) program

host program + translated SQL

DBMS and other libraries

Sharing Variables
Variables to be shared between the embedded SQL code and the 3GL have to be
specified in the program.

EXEC SQL begin declare section;
 varchar userid[10],password[10],cname[15];
 int cno;
EXEC SQL end declare section;

We also should declare a link to the DBMS so that database status information can be
accessed.

EXEC SQL include sqlca;

This allows access to a structure sqlca, of which the most common element sqlca.sqlcode
has the value 0 (operation OK), >0 (no data found), and <0 (an error).

Connecting to the DBMS
Before operations can be performed on the database, a valid connection has to be
established.

EXEC SQL connect :userid identified by :password;

• In all SQL statements, variables with the `:' prefix refer to shared host variables,
as opposed to database variables (e.g. row or column identifiers).

• This assumes that userid and password have been properly declared and
initialised.

When the program is finished using the DBMS, it should disconnect using:

EXEC SQL commit release;

Queries producing a single row
A single piece of data (or row) can be queried from the database so that the result is
accessible from the host program.

12/08/02 18:16 CO22001 Database Systems

Page 122 Copyright © 2001 Napier University +44 141 455 2754

EXEC SQL SELECT custname
 INTO :cname
 FROM customers
 WHERE cno = :cno;

Thus the custname with the unique identifier :cno is stored in :cname.

However, a selection query may generate many rows, and a way is needed for the host
program to access results one row at a time.

SELECT with a single result

Host Program (eg C++)

EXEC SQL BEGIN DECLARE SECTION;
 varchar cname[15];
 int cno;
EXEC SQL END DECLARE SECTION;

 // get customer number from
cout << "customer number please ->";
cin >> cno;

EXEC SQL SELECT custname
 INTO :cname
 FROM customers
 WHERE cnum = :cno;

 // output customer
cout << "the customer's name is " << cname.arr;

DBMS

Databas
OTHER I/O

SELECT
`INTO'

Cursors - SELECT many rows
• A cursor provides a pointer to a single row in the result of a selection query

(which may return may rows)

• Cursors are declared by statements similar to view definitions

• One row at a time is accessed through the cursor, which is moved to the next row
before each data transfer

• The columns of that one row are `fetched' into the program variables which can
then be manipulated in the normal way by the host program.

• A cursor can also be used to update values in tables.

Fetching values

EXEC SQL fetch <cursor-name> into <target-list>

• this moves the cursor to the next row of the select query result and transfers the
values from the result row into the program variables specified in target-list.

• a special value is returned when an attempt is made to fetch a non-existent row
after the last row available to the cursor, (sqlca.sqlcode > 0)

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 123

Declaring and Opening a Cursor

EXEC SQL declare <cursor name> cursor for
 <select statement>
 [for update [<of column-list>]]

• the last element of the definition is required only if the cursor is to be used for
updates or deletes on the parts of the table involved in the cursor select statement.

• the column-list part is omitted if the rows are to be deleted.

EXEC SQL open <cursor name>

• the view described in the cursor declaration is created

• the cursor is positioned before the first row of the select query result.

Program Example
 Host Program (eg C++)

OTHER I/O

EXEC SQL BEGIN DECLARE SECTION;
 varchar cname[15]; int cno;

EXEC SQL END DECLARE SECTION;
 // declare a cursor :-

EXEC SQL DECLARE cust_cr CURSOR FOR
 SELECT cnum,custname FROM customers;
 // read first row :-
EXEC SQL FETCH cust_cr INTO :cno, :cname
while (sqlca.sqlcode == 0) {
 // while there are rows process one row
 cname.arr[cname.len] = '\0';
 cout <<"\ncustomer number is " << cno

 << "customer number is " << cname.arr;
 // get next row
 EXEC SQL FETCH cust_cr INTO :cno, :cnam
}
EXEC SQL CLOSE cust_cr;

DBMS

Database

Row 1

Row 2

etc
Row 3

OPEN

Summary
• Cursors provide a means of integrating traditional 3GL procedural languages and

databases by enabling row-at-a-time access.

• Languages such as Visual Basic and Visual C++ also have build-in statements
that enable this type of processing with a dedicated database, like that provided by
MS-Access.

• Java has a well-defined interface to enable easy access to databases through a
Database Connectivity library - JDBC.

• Unfortunately, there are many `standards'.

12/08/02 18:16 CO22001 Database Systems

Page 124 Copyright © 2001 Napier University +44 141 455 2754

Unit 5.2a - Database Administrator

Unit 5.2a - Database Administrator
The database administrator (DBA) should be positioned in middle-top management in an
Organisation. DBAs are highly paid, due to the nature of their responsibilities and
technical know-how.

The importance of their role varies according to the complexity and number of databases
in the organisation.

A DBA is involved in a large number of tasks:

• design and organisation

• Data Definition - what is to go into the database

• Physical Structure - how the data is to be held in the database

• Data Dictionary/Directory - documentation on the database
implementation

• user interface

• Provision of documentation - users need to understand the database

• Liason with users/Education - users have needs which must be met, and
need educating on how to achieve their goals with respect to accessing and
manipulating the database.

• GUI - often the users will required a graphical user interface for the
database. This will have to be written to match their needs and
requirements.

• security

• Normal Operations - day to day maintainance, adding users, etc.

• Failure Conditions - disk failures, machine failures, and database flaws.

• Compatibility with non-DBMS - some users will need to read database
entries out of the database and into other products, such as spreadsheets
and word processors. This must be achieved without violating security and
the organisation's policy.

• Test Databases - new databases (and modified old ones) must be tested.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 125

• system performance

• Timing - it is important to detect where the DBMS spends its time, and
what effect this is going to have in the future. Future predictions can be
made using the organisation's short and long-term plan.

• Performance tuning - if the DBMS is slow for some tasks, then perhaps by
manipulating the database the tasks can be speeded up.

DBA Tools
To assist the DBA in his or her duties, a number of tools are available:

• Loading routines

• Reorganising routines

• Journaling routines

• Recovery routines

• Statistical Analysis routines

• Data Dictionary

DBMS Product Evaluation
Another task performed by the DBA is the evaluation and comparison of DBMS's, so that
the correct product can be selected to meet the database and customer specification. This
cannot be done in isolation from the context in which the product will operate, and
should be done before database implementation. Consider:

• Price

• Documentation

• Support Agreements

• Data Structurer supported

• Performance

• Tools

Data Structures Supported
The DBA must select which data model to use. In this module on relation data models
have really been considered. There are also object-oriented, hierarchical, and network
models. Some data sets will fall naturally into one model. For instance, a hierarchical
model can be specified as a network, but network has more overheads. The DBA must

12/08/02 18:16 CO22001 Database Systems

Page 126 Copyright © 2001 Napier University +44 141 455 2754

weigh up all the pros and cons of each model.

Note that the selection of DBMS should not occur until after proper business analysis,
data analysis, and logical design. Thus model used should not be affected by the DBMS
selected.

Performance
Response depends on a variety of factors

• Quality of software-implementation and engineering

• Hardware support

• CPU power

• Main memory

• Disks

• Dedicated DB machine

• Volume of data

• Series of benchmarks available.

Tools
• Faculties offered in addition to DBMS, eg

• Report writer

• Forms generator

• 4GL

• Query Language

• Data Dictionary

• How user-friendly are the tools?

• Query language - adhere to any standard? (eg SQL for a relational DBMS)

• If the DBMS selected is relational, one can check how it measures up
against Codd's rules.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 127

Unit 5.2b - Security

Unit 5.2b - Security
Security of the database involves the protection of the database against:

• unauthorised disclosures

• alteration

• destruction

The protection which security gives is usually directed against two classes of user

• Stop people without database access from having any form of access.

• Stop people with database access from performing actions on the database which
are not required to perform their duties.

There are many aspects to security

• Legal, social and ethical aspects

Legally there is the Data Protection Act, which places restrictions on databases
which contain information on living people. This was created to protect the public
from data contained on a computer, about themselves, to which the public had
previously no legal right of access. Information on computers can be wrong, and
decisions made on wrong information concerns the public and additionally is of
no benefit to the company holding the data. The act supports the idea of the public
querying data, and indicating errors in that data.

However, just because a database is legal does not make it socially or ethically
acceptable. Collating medical records on computer for a hospital is acceptable,
but not having enough security to prevent insurance companies accessing the
database and using that as a basis for rejecting life assurance applications could be
considered questionable. Frequently is it best to place the tightest restrictions on
who can access data, and where necessary security deliberately relaxed to allow
only legitimate queries to take place.

• Physical controls

Security often begins with physical controls. If a person cannot enter the building
where the database runs and is accessed, then that person cannot access the
database. Usually the construction of security is a layered approach, where a
person bent on accessing the database must penetrate multiple levels of security.
The simple precaution of having all the database access points behind locked
doors can only add to the security of the system.

12/08/02 18:16 CO22001 Database Systems

Page 128 Copyright © 2001 Napier University +44 141 455 2754

• Policy questions

Security of a database is often the enforcement in the database of the company
policy. All companies should have a policy statement, listing what is acceptable
and what is not. Companies with weak policy statements will often have the
weakest security. At a minimum, it should be policy that data stored in the
database should not be made available to outside agents without written consent
from a Managing Director. Without a policy statement, it is hard to argue that an
employee has actually done anything wrong...

• Operational problems

If only a single person has access to a database, security is certainly higher than if
many people have access. However, if all the people in the UK had to phone the
same one person to find out what their bank balance was the whole system would
quickly become unworkable. Security considerations often have to be balanced
against operational issues.

• Hardware controls

No matter how secure the database actually is, if a person can simply steal the
hard drive on which the database is stored, then that person can access the
database at leisure. This case is obvious, but less obvious security failures, such as
taking a copy of a backup tape of the database, can be harder to safeguard against.

• Operating system security

Most DBMS's run on top of an operating system (OS). Examples of OS's include
Window 95, Windows NT, and Unix. The database may be secure from within
the DBMS, but if the database can also be accessed from the OS using simple file
handling programs, then a clear weakness in the security model exists.

• Database system security

Within the DBMS itself, if anyone can access anything then having any other sort
of security seems pointless. The use of user accounts and password protection of
user identities is a good starting point to improve security. User identities is also
an aid to accountability. Protection of certain elements of the database with
respect to certain users (or user groups) should always be considered where
potentially confidential data is being stored. It is DBMS security which is the
focus of this discussion.

Granularity of DBMS Security
The unit of data used in specifying security in the database can be, for example;

• the entire database

• a set of relations

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 129

• individual relation

• a set of tuples in a relation

• individual tuple

• a set of attributes of all tuples

• an attribute of an individual tuple.

DBMS-level Protection
• Data encryption:

Often it is hard to prevent people from copying the database and then hacking into
the copy at another location. It is easier to simply make copying the data a useless
activity by encrypting the data. This means that the data itself is unreadable unless
you know a secret code. The encrypted data in combination with the secret key is
needed to use the DBMS.

• Audit Trails:

If someone does penetrate the DBMS, it is useful to find out how they did it and
what was accessed or altered. Audit Trails can be set up selectively to minimise
disk usage, identify system weaknesses, and finger naughty users.

User-level Security for SQL
• Each user has certain access rights on certain objects.

• Different users may have different access rights on the same object.

In order to control the granularity of access rights, users can

• Have rights of access (authorisations) on a table

• Have rights of access on a view. Using views, access rights can be controlled
horizontal and vertical subsets on a table, and on dynamically generated data from
other tables.

Naming Hierarchy
In a DBMS, there is a two layer approach to naming relations.

• The DBMS is made up of a number of `databases'. The Database Administrator
(DBA) has permission to create and delete databases, and to grant users access to
databases.

• Each database is a flat name space. Users with the necessary permission can
create tables and views in a database. Because it is a flat name space, all table

12/08/02 18:16 CO22001 Database Systems

Page 130 Copyright © 2001 Napier University +44 141 455 2754

names must be unique within a database. The DBMS helps users in this regard:

• table and view names are prepended with the name of the user who
created it.

• the database login name is often taken as the username.

By way of an example, consider a table `hello' created by a user jbloggs.

• The table will have the name jbloggs.hello

• The user jbloggs can access the table using the name `hello'

• Other users must use the table's full name to access the table

The user jbloggs can control who has access to the table using the GRANT command.

If the DBA creates a table, and makes it available to PUBLIC, then no user needs to
specify the full table name in order to access it.

The GRANT command
GRANT is used to grant privileges to users

GRANT privileges ON tablename
 TO { grantee ... }
 [WITH GRANT OPTION]

Possible privileges are:

• SELECT - user can retrieve data

• UPDATE - user can modify existing data

• DELETE - user can remove data

• INSERT - user can insert new data

• REFERENCES - user can make references to the table

The WITH GRANT OPTION permits the specified user can grant privileges which that
user possesses on that table to other users. This is a good way to permit other users to
look after permissions for certain tables, such as allowing a manager to control access to
a table for his or her subordinates.

grantee need not be a username or a set of usernames. It is permitted to specify PUBLIC,
which means that the privileges are granted to everyone.

GRANT SELECT ON userlist TO PUBLIC;

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 131

Unit 5.3 - Data Dictionary

Unit 5.3 - Data Dictionary
A Data Dictionary System (DDS) is a software tool for recording and processing data
about the data (metadata) that an organisation uses and processes. Originally DDS were
designed as documentation tools, ensuring standard terminology for data items (and
sometimes programs) and providing a cross reference capability. They have now evolved
as an essential feature of the systems environment and as a tool for the DBA to keep track
of data on the database and control its use. This helps to minimise maintenance and
development costs.

A DDS is a central catalogue of the definitions and usage of the data within an
organization. It can be used as a stand alone tool or integrated with a DBMS. Most DDS
are used chiefly as a documentation aid and as a control point for referencing data. They
may also play an active role in systems design, programming and in running systems. It
could be used to provide the data structures to the program at compile time or validate
data at execution time. It can be used as a storage base of programming code
(sub-programs) and these sub-programs may be used in a number of programs.

Benefits of a DDS
Benefits of a DDS are mainly due to the fact that it is a central store of information about
the database.

Benefits include -

• improved documentation and control

• consistency in data use

• easier data analysis

• reduced data redundancy

• simpler programming

• the enforcement of standards

• better means of estimating the effect of change.

DDS Facilities
A DDS should provide two sets of facilities:

• To record and analyse data requirements independently of how they are going to

12/08/02 18:16 CO22001 Database Systems

Page 132 Copyright © 2001 Napier University +44 141 455 2754

be met - conceptual data models.

• To record and design decisions in terms of database or file structures
implemented and the programs which access them - internal schema.

The conceptual view shows a model of the organisation, that is, the entities, their
attributes, and the relationship between these entities. This model is a result of the data
analysis process and is therefore independent of any data processing implications. The
conceptual view can also include details of the events and operations that occur in the
organisation. It represents the conceptual schema.

The implementation view gives information about the data processing applications in
computing terms. The processes are therefore described as systems, programs and
sub-programs. The data is described in terms of files, records and fields.

One of the main functions of a DDS is to show the relationship between the conceptual
and implementation views. The mapping should be consistent - inconsistencies are an
error and can be detected here.

DD Information
• The names associated with that element (aliases)

• A description of the data element in natural language.

• Details of ownership.

• Details of users that refer to the element.

• Details of the systems and programs which refer to or update the element.

• Details on any privacy constraints that should be associated with the item.

• Details about the data element in data processing systems, such as the length of
the data item in characters, whether it is numeric alphabetic or another data type,
and what logical files include the data item.

• The security level attached to the element in order to control access.

• The total storage requirement.

• The validation rules for each element (e.g. acceptable values).

• Details of the relationship of the data items to others.

DD Management
• With so much detail held on the DDS, it is essential that an indexing and cross-

referencing facility is provided by the DDS.

• The DDS can produce reports for use by the data administration staff (to

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 133

investigate the efficiency of use and storage of data), systems analysts,
programmers, and users.

• DDS can provide a pre-printed form to aid data input into the database and DD.

• A query language is provided for ad-hoc queries. If the DD is tied to the DBMS,
then the query language will be that of the DBMS itself.

Management Objectives
From an management point of view, the DDS should

• provide facilities for documenting information collected during all stages of a
computer project.

• provide details of applications usage and their data usage once a system has been
implemented, so that analysis and redesign may be facilitated as the environment
changes.

• make access to the DD information easier than a paper-based approach by
providing cross-referencing and indexing facilities.

• make extension of the DD information easier.

• encourage systems analysts to follow structured methodologies.

Advanced Facilities
Extra facilities which may be supported by DDS are:-

• Automatic input from source code of data definitions (at compile time).

• The recognition that several versions of the same programs or data structures may
exist at the same time.

• live and test states of the programs or data.

• programs and data structures which may be used at different sites.

• data set up under different software or validation routine.

• The provision of an interface with a DBMS.

• Security features such as password protection, to restrict DDS access.

• Generation of update application programs and programs to produce reports and
validation routines.

Management Advantages
A number of possible benefits may come from using a DDS:-

12/08/02 18:16 CO22001 Database Systems

Page 134 Copyright © 2001 Napier University +44 141 455 2754

• A DDS can improve the ability of management to control and know about the
data resource of the enterprise.

It can also show all the program files and reports that may be affected by any
change to the definition or usage of data elements and possibly to generate code
which reflects that change. This allows accurate assessment of cost and time scale
to effect any change.

• A DDS reduces the clerical load of database administration. It gives the DBA
more control over the design and use of the data base.

Accurate data definitions can be provided directly to program. Sensitive data can
be made available only to particular users. Files and programs can be checked to
ensure that standards are being followed.

• A DDS can aid the recording, processing, storage and destruction of data and
associated documents flowing through an organisation.

• A DDS can help systems development by generating test files and providing
documentation.

• A DDS provides application programs with data definitions and subroutines and
therefore enforces some standards on programming, making programs more
readable and consistent.

• A DDS aids application program maintenance because changes to the data and the
data structures can be made where appropriate to all programs using the data.

• A DDS aids the operations side of computing by holding details of storage and
recovery procedures, and archiving information.

• A DDS can provide effective security features such as passwords to assist in the
protection of the data resource.

Management Disadvantages
A DDS is a useful management tool, but at a price.

• The DDS 'project' may itself take two or three years.

• It needs careful planning, defining the exact requirements designing its contents,
testing, implementation and evaluation.

• The cost of a DDS includes not only the initial price of its installation and any
hardware requirements, but also the cost of collecting the information entering it
into the DDS, keeping it up-to-date and enforcing standards.

• The use of a DDS requires management commitment, which is not easy to
achieve, particularly where the benefits are intangible and long term.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 135

Tutorial - ER Modelling 1

Tutorial - ER Diagram Examples 1-2
Example 1
A publishing company produces scientific books on various subjects. The books are
written by authors who specialize in one particular subject. The company employs editors
who, not necessarily being specialists in a particular area, each take sole responsibility for
editing one or more publications. A publication covers essentially one of the specialist
subjects and is normally written by a single author. When writing a particular book, each
author works with on editor, but may submit another work for publication to be
supervised by other editors. To improve their competitiveness, the company tries to
employ a variety of authors, more than one author being a specialist in a particular
subject.

Example 2
A General Hospital consists of a number of specialized wards (such as Maternity,
Paediatry, Oncology, etc). Each ward hosts a number of patients, who were admitted on
the recommendation of their own GP and confirmed by a consultant employed by the
Hospital. On admission, the personal details of every patient are recorded. A separate
register is to be held to store the information of the tests undertaken and the results of a
prescribed treatment. A number of tests may be conducted for each patient. Each patient
is assigned to one leading consultant but may be examined by another doctor, if required.
Doctors are specialists in some branch of medicine and may be leading consultants for a
number of patients, not necessarily from the same ward.

Tutorial - ER Modelling 2

Tutorial - ER Diagram Examples 3-5
Example 3
A database is to be designed for a Car Rental Co. (CRC). The information required
includes a description of cars, subcontractors (i.e. garages), company expenditures,
company revenues and customers. Cars are to be described by such data as: make, model,
year of production, engine size, fuel type, number of passengers, registration number,
purchase price, purchase date, rent price and insurance details. It is the company policy
not to keep any car for a period exceeding one year. All major repairs and maintenance

12/08/02 18:16 CO22001 Database Systems

Page 136 Copyright © 2001 Napier University +44 141 455 2754

are done by subcontractors (i.e. franchised garages), with whom CRC has long-term
agreements. Therefore the data about garages to be kept in the database includes garage
names, addressees, range of services and the like. Some garages require payments
immediately after a repair has been made; with others CRC has made arrangements for
credit facilities. Company expenditures are to be registered for all outgoings connected
with purchases, repairs, maintenance, insurance etc. Similarly the cash inflow coming
from all sources - car hire, car sales, insurance claims - must be kept of file.CRC
maintains a reasonably stable client base. For this privileged category of customers
special credit card facilities are provided. These customers may also book in advance a
particular car. These reservations can be made for any period of time up to one month.
Casual customers must pay a deposit for an estimated time of rental, unless they wish to
pay by credit card. All major credit cards care accepted. Personal details (such as name,
address, telephone number, driving licence, number) about each customer are kept in the
database.

Example 4
A database is to be designed for a college to monitor students' progress throughout their
course of study. The students are reading for a degree (such as BA, BA(Hons) MSc, etc)
within the framework of the modular system. The college provides a number of module,
each being characterised by its code , title, credit value, module leader, teaching staff and
the department they come from. A module is co-ordinated by a module leader who shares
teaching duties with one or more lecturers. A lecturer may teach (and be a module leader
for) more than one module. Students are free to choose any module they wish but the
following rules must be observed: some modules require pre-requisites modules and
some degree programmes have compulsory modules. The database is also to contain
some information about students including their numbers, names, addresses, degrees they
read for, and their past performance (i.e. modules taken and examination results).

Example 5
A relational database is to be designed for a medium sized Company dealing with
industrial applications of computers. The Company delivers various products to its
customers ranging from a single application program through to complete installation of
hardware with customized software. The Company employs various experts, consultants
and supporting staff. All personnel are employed on long-term basis, i.e. there are no
short-term or temporary staff. Although the Company is somehow structured for
administrative purposes (that is, it is divided into departments headed by department
managers) all projects are carried out in an inter-disciplinary way. For each project a
project team is selected, grouping employees from different departments, and a Project
Manager (also an employee of the Company) is appointed who is entirely and exclusively
responsible for the control of the project, quite independently of the Company's
hierarchy. The following is a brief statement of some facts and policies adopted by the
Company.

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 137

Multiple Choice Tutorial

Multiple Choice - HOWTO
The first diet exam for databases is often a Multiple Choice exam paper. The second diet
(the resit paper) is more usually a written paper. However, be prepared for either multiple
choice or a written paper. It should not affect your study method, and if it does you are
doing something wrong.

Here are a couple of useful guides to a successful multiple-choice exam.

1. Look at each question in turn.

2. Score out answers on the question sheet which are obviously wrong.

3. Do not be afraid of going onto the next question if no single correct answer can be
selected immediately.

4. Read each question CAREFULLY. Are you selecting a TRUE answer or a
FALSE answer from the options?

5. Try not to revisit answers before attempting all the other questions.

The Answer Sheet
There are a few different answer sheets in use for this exam. It is ALWAYS best to read the
instructions given with the exam, and any comments which the invigilator gives you. In some
cases the exam may be automatically scanned and marked by computer, which may require you
to use a very specific way of entering the answers.

The answer sheet shown here is the one first used in this module, and is still used where
electronic support for automatic marking is not available. In all exams there may be a box for
your full name. Napier currently uses an anonymous marking system, so do not enter your name
unless you are uncertain if you have entered your Matrix No correctly. Every year there are still
a few students who seem unable to write in their Matrix No properly and legibly.

12/08/02 18:16 CO22001 Database Systems

Page 138 Copyright © 2001 Napier University +44 141 455 2754

Matrix No:

Full Name: ______________________________

Q A B C D E Q A B C DE

1 6

2 7

3 8

4 9

5 10

Entering an answer

Entering A for Q1. Changing A to C in Q1.

QA B C D E QABCDE

1

1

Changing C back to A in Q1.

QA B C D E

1 A

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 139

Reason/Assertion

In past exams a number of REASON/ASSERTION question were used. For example

Assertion : Fire is hot to the touch
Reason : Fire needs Oxygen to burn

Option Assertion Reason Assertion BECAUSE reason

A True True REASON IS a valid reason...

B True True REASON IS NOT a valid reason...

C True False

D False True

E False False

The Assertion is TRUE, and the Reason is TRUE, but the Assertion is not true because of
the Reason, so the answer is B.

Reason/Assertion questions are NO LONGER USED in current exams.

12/08/02 18:16 CO22001 Database Systems

Page 140 Copyright © 2001 Napier University +44 141 455 2754

Example

Now give the written Multiple Choice tutorial a try. Give yourself 30 minutes for the test.
It is not assessed, and it does not count towards your final mark.

In a subsequent session, I will go over the assessment with you. Good luck!

1. A publishing company produces academic books on various subjects. Books are
written by authors who specialise in one or more particular subject. The company
employs a number of editors who do not have particular specialisations but who
take sole responsibilty for for editing one or more publications. A publication
covers a single subject area but may be written by one or more author - the
contribution of each author is recorded as a percentage for the purposes of
calculating royalties.

The following ER diagram is intended to represent the above specification:

author subject

contribution

publication editor

specialises in

makes

to

is about

edits

Indicate the relation which has an incorrect cardinality shown:

A. specialises in

B. makes

C. is about

D. to

E. None of the above

2. The specification is to be changed so that an author can develop a publication
covering more than one subject area and that the schema must be able to store the

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 141

percentage of the compents concerned with each of the subjects. Select an
appropriate change to the ER diagram:

A. publication-subject becomes many to many

B. author-subject becomes many to many

C. author-publication becomes many to many

D. more than one of the above

E. none of the above

3. Consider the relational schema R(A,B,C,D,E) with non-key functional
dependencies C,D - E and B - C.

Select the strongest statement that can be made about the schema R

A. R is in first normal form

B. R is in second normal form

C. R is in third normal form

D. R is in BCNF normal form

E. None of the above

4. Locking was introduced into databases so that

A. Keys can be provided to maintain security.

B. Reading and writing is possible.

C. All simultaneous transactions are prevented.

D. Passwords can be provided to maintain security

E. Consistency can be enforced.

5. When accessing a disk block, the seek time

A. is insignificant in comparison to transfer times

B. is about the same as transfer times

C. greatly exceeds transfer times

12/08/02 18:16 CO22001 Database Systems

Page 142 Copyright © 2001 Napier University +44 141 455 2754

D. is the time taken to search for data in a sorted list of database rows

E. is measured in nanoseconds

6. Hash-table insertions

A. avoid hash-collisions by manipulating the foreign keys

B. might use hash-chains to allow hash-collisions

C. use balanced binary trees to allow hash-collisions

D. use primary keys to avoid hash-collisions

E. become unusable if there are any hash-collisions

7. When a transaction aborts

A. all users must be notified

B. all changes it has made are immediately available to other transactions

C. the modifications of all transactions currently running are also aborted

D. it can abort transactions which have already committed

E. it releases all of its locks

8. Films Database

Consider the following database:
MOVIE(id,title,yr)
ACTOR(id,name)
CASTING(movieid,actorid)

Assertion Reason

The films database is NOT in BCNF The table CASTING has a composite key

Option Assertion Reason Assertion BECAUSE reason

A True True REASON IS a valid reason...

B True True REASON IS NOT a valid reason...

C True False

CO22001 Database Systems Student Notes

Dr G. Russell Copyright © 2002 Napier University Page 143

D False True

E False False

9. Using the same Films Database, identify the SQL command which will return the
titles of all 1959 Marilyn Monroe films.

A. The following SQL...

 SELECT title FROM movie,casting,actor
 WHERE movieid = movie.id
 AND name = 'Marilyn Monroe'
 ;

B. The following SQL...

 SELECT title FROM movie,actor
 WHERE name = 'Marilyn Monroe'
 AND yr = 1959
 ;

C. The following SQL...

 SELECT title FROM movie,casting,actor
 WHERE movieid = movie.id
 AND actor.id = actorid
 AND name = 'Marilyn Monroe'
 AND yr = 1959
 ;

D. The following SQL...

 SELECT title FROM movie,casting,actor
 WHERE movieid = movie.id
 AND actor.id = actorid
 AND movie.yr = casting.yr
 AND name = 'Marilyn Monroe'
 AND yr = 1959
 ;

E. None of the above

10. Consider the relational schema R(A,B,C,D,E) with non-key functional
dependencies C,D - E and B - C.

Assertion Reason

In the relation R (above) the functional dependency C,D-E
is transitive C and D do NOT contribute to the

primary key

12/08/02 18:16 CO22001 Database Systems

Page 144 Copyright © 2001 Napier University +44 141 455 2754

Option Assertion Reason Assertion BECAUSE reason

A True True REASON IS a valid reason...

B True True REASON IS NOT a valid reason...

C True False

D False True

E False False

